
SPECTRALMPNN: SPECTRAL GRAPH ARCHITECTURES FOR NEURAL
ALGORITHMIC REASONING

Ronald Albert de Araújo

Dissertação de Mestrado apresentada ao
Programa de Pós-graduação em Engenharia
de Sistemas e Computação, COPPE, da
Universidade Federal do Rio de Janeiro, como
parte dos requisitos necessários à obtenção do
título de Mestre em Engenharia de Sistemas e
Computação.

Orientadores: Gerson Zaverucha
Aline Marins Paes Carvalho

Rio de Janeiro
Maio de 2025

SPECTRALMPNN: SPECTRAL GRAPH ARCHITECTURES FOR NEURAL
ALGORITHMIC REASONING

Ronald Albert de Araújo

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO
ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE
ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO
GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E
COMPUTAÇÃO.

Orientadores: Gerson Zaverucha
Aline Marins Paes Carvalho

Aprovada por: Prof. Gerson Zaverucha
Profa. Aline Marins Paes Carvalho
Prof. Daniel Ratton Figueiredo
Prof. Diego Mesquita

RIO DE JANEIRO, RJ – BRASIL
MAIO DE 2025

de Araújo, Ronald Albert
SpectralMPNN: Spectral Graph Architectures for

Neural Algorithmic Reasoning/Ronald Albert de Araújo.
– Rio de Janeiro: UFRJ/COPPE, 2025.

XIV, 80 p.: il.; 29, 7cm.
Orientadores: Gerson Zaverucha

Aline Marins Paes Carvalho
Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2025.
Referências Bibliográficas: p. 54 – 67.
1. neural algorithmic reasoning. 2. spectral

graph neural networks. 3. message passing. 4.
graph signal processing. I. Zaverucha, Gerson et al.
II. Universidade Federal do Rio de Janeiro, COPPE,
Programa de Engenharia de Sistemas e Computação. III.
Título.

iii

A todos aqueles que continuam
ao meu lado e continuarão anos

por vir.

iv

Agradecimentos

Este trabalho é indiretamente coescrito por todos os mencionados nesta seção de
agradecimentos. Gostaria de iniciar expressando minha profunda gratidão a todos
que contribuíram, direta ou indiretamente, para o desenvolvimento desta disser-
tação.

Em primeiro lugar, gostaria de agradecer aos dois coautores formais, Prof. Ger-
son Zaverucha e Profa. Aline Paes, que foram fundamentais para a realização desta
dissertação. Sua atenção e colaboração durante a orientação foram uma grande fonte
de inspiração pessoal, e expresso aqui minha profunda admiração por ambos, como
pesquisadores e professores. É uma honra enorme poder dividir esse trabalho com
dois grandes pesquisadores na área de Inteligência Artificial e sou extremamente
grato por poderem coassinar este trabalho comigo.

Aos meus pais, Ronald Albert e Carla Bitencourt, que sempre estiveram pre-
sentes e incentivaram minha educação. Meus alicerces, que me dão tranquilidade
em relação ao futuro e que mais me auxiliam, e sempre me auxiliaram, a superar
minhas barreiras. Muito obrigado, por terem me fornecido segurança até aqui e
espero que ainda possam fornecer muito mais.

À minha irmã, Rebecca Bitencourt, que conheço desde o nascimento e com quem
compartilho uma relação muito singular. É ela quem melhor sabe me avaliar de uma
perspectiva única e apontar caminhos ainda não explorados. Obrigado por sempre
abrir meus olhos para novas possibilidades e por me conhecer tão bem. Acredito
que ninguém jamais conseguirá me acessar tão profundamente quanto você.

Ao meu avô, Francisco de Assis Bitencourt, que sempre demonstrou interesse
pelo que estou fazendo e nutre grande admiração por mim. Nunca teria conquistado
nada se não fosse por seus incentivos e pela crença no meu potencial.

Aos meus amigos mais próximos, João Vitor Esteves e David Medeiros, que, além
de compartilharem comigo boa parte da experiência da pós-graduação — ainda que
em áreas diferentes —, também me acompanham nos bons momentos da vida. Muito
obrigado pelo esforço de me compreenderem e por continuarem ao meu lado.

Aos meus colegas de mestrado e grandes amigos, Anna Barbara Coimbra e Ro-
drigo Tanajura, que tornaram a experiência da pós-graduação na COPPE mais leve
e significativa, compartilhando comigo os desafios e conquistas dessa jornada. Por

v

mais impressionante que pareça, nossos almoços juntos tiveram um papel funda-
mental na construção desta dissertação.

Aos meus grandes amigos, Tobias, Carolina, Myllene, Lucas, Hernan, Silvana,
Luiza, Julio, Mariana, Guilherme, Gabriel, Juliana, Cecilia, Luiza, Lara, Daniel
Marcelo, Geovanna e Marcelle, pela certeza de sempre encontrar a felicidade ao lado
de vocês.

À toda minha família, Flavio, Bernardo, Maria Antonia, Marcelo, Eduardo e
Paula, pelo apoio desde o meu nascimento até hoje.

A todo o corpo discente do grupo de pesquisa MeLLL-UFF, por valiosas dis-
cussões e pelo trabalho excepcional no campo da Inteligência Artificial. Em especial,
ao aluno Gabriel Assis, cujo auxílio na operação das máquinas foi fundamental para
a realização dos experimentos.

Sou grato à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
(CAPES) pelo apoio financeiro concedido para a realização deste trabalho.

Gostaria de agradecer também aos professores Daniel Ratton e Diego Mesquita
pela presença na banca e pela disponibilidade em avaliar esta dissertação.

vi

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

SPECTRALMPNN: ARQUITETURAS ESPECTRAIS EM GRAFOS PARA
EXECUÇÃO ALGORÍTMICA

Ronald Albert de Araújo

Maio/2025

Orientadores: Gerson Zaverucha
Aline Marins Paes Carvalho

Programa: Engenharia de Sistemas e Computação

Neural algorithmic reasoning é um subcampo emergente do aprendizado de rep-
resentações que se concentra no treinamento de modelos neurais para imitar de
forma eficaz as execuções de algoritmos clássicos da ciência da computação. Essa
área tem demonstrado grande valor tanto em aplicações práticas—onde modelos pré-
treinados em dados algorítmicos apresentam desempenho aprimorado—quanto em
pesquisas teóricas, ao revelar aspectos arquiteturais das redes neurais que favorecem
o computação discreta.A maioria das abordagens existentes restringem as arquite-
turas aplicadas ao tipo de Redes Neurais Message-Passing em grafos. Essa escolha
decorre principalmente da versatilidade das estruturas de grafos, capazes de aproxi-
mar uma ampla variedade de estruturas de dados, e de descobertas teóricas recentes
que destacam a relação entre a passagem de mensagens e a programação dinâmica.
No entanto, existe uma limitação fundamental associada a este paradigma: seu viés
inerente para representações suaves no grafo. Esse viés está diretamente relacionado
ao fenômeno de over-smoothing, no qual múltiplas rodadas de message-passing fazem
com que todas as representações de nós convirjam para um mesmo valor. Essa lim-
itação dificulta a aplicação das Message-Passing GNNs a grafos heterofílicos, onde
nós conectados frequentemente apresentam características distintas, que é o cenário
presente em grande parte das tarefas algorítmicas. Por outro lado, Spectral GNNs
representam uma classe de redes neurais em grafos que exploram a estrutura do
grafo aprendendo filtros diretamente no domínio da Transformada de Fourier no
grafo. Isso as permite atuar como filtros adaptativos, possibilitando a propagação
de sinais de forma flexível com base na frequência. Nesta dissertação, propomos o

vii

uso de Spectral GNNs para o Neural Algorithmic Reasoning e introduzimos a Spec-
tralMPNN—uma Spectral GNN que combina filtragem adaptativa com uma camada
de message-passing. A SpectralMPNN foi projetada para manter os vieses indutivos
benéficos de message-passing, ao mesmo tempo em que incorpora filtragem adapta-
tiva de frequências. Nossos experimentos mostram que essa arquitetura supera os
modelos existentes em diversos algoritmos do benchmark CLRS-30.

viii

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Master of Science (M.Sc.)

SPECTRALMPNN: SPECTRAL GRAPH ARCHITECTURES FOR NEURAL
ALGORITHMIC REASONING

Ronald Albert de Araújo

May/2025

Advisors: Gerson Zaverucha
Aline Marins Paes Carvalho

Department: Systems Engineering and Computer Science

Neural algorithmic reasoning is an emerging subfield of representation learning
that focuses on training neural models to effectively mimic the execution traces of
classical computer science algorithms. This field has shown significant value in prac-
tical applications—where models pre-trained on algorithmic data exhibit enhanced
performance—and in theoretical research by shedding light on the architectural as-
pects of neural networks that facilitate discrete reasoning. Most existing approaches
to this problem restrict the design space to Message-Passing GNNs. This choice is
primarily driven by the versatility of graph structures, which can approximate a wide
range of data structures, and by recent theoretical findings highlighting the align-
ment between message passing and dynamic programming. However, prior studies
have underscored a fundamental limitation of message passing: its inherent bias to-
ward smooth representations across the graph. This characteristic is closely linked
to the over-smoothing phenomenon, where multiple rounds of message passing cause
all node representations to converge to the same value. This limitation poses chal-
lenges for applying Message-Passing GNNs to heterophilic graphs, where connected
nodes often have distinct features, which is commonly the case for algorithmic tasks.
Conversely, Spectral GNNs represent a class of graph neural networks that leverage
the graph structure by learning effective filters directly in the Graph Fourier domain.
This enables them to function as adaptive filters, allowing flexible frequency-based
signal propagation. In this dissertation, we propose using Spectral GNNs for neural
algorithmic reasoning and introduce SpectralMPNN—a Spectral GNN that inte-
grates filtering with a Message-Passing layer. SpectralMPNN is designed to retain

ix

the beneficial inductive biases of message passing while incorporating adaptive fre-
quency filtering. Our experiments show that this architecture outperforms existing
models across multiple algorithms in the CLRS-30 benchmark.

x

Contents

List of Figures xiii

List of Tables xiv

1 Introduction 1
1.1 System 1 and System 2 . 2
1.2 Neural Algorithmic Reasoning . 4
1.3 Deep Learning over graphs . 5
1.4 Structure of the Dissertation . 6

2 Deep Learning over Graphs 7
2.1 Spatial Graph Neural Networks . 8

2.1.1 Over-smoothing in Spatial GNNs 13
2.2 Spectral Graph Neural Networks . 14

2.2.1 Graph Signal Processing . 14
2.2.2 Spectral GNN architectures 16

2.3 Permutation-Equivariance in Graph Neural Networks 18
2.4 Out-of-Distribution (OOD) generalization 19

3 Neural Algorithmic Reasoning 21
3.1 Algorithmic Alignment [1] . 21
3.2 The CLRS Algorithmic Reasoning Benchmark [2] 23

3.2.1 Structure of the Dataset . 24
3.2.2 How the CLRS30 benchmark addresses OOD generalization . 25
3.2.3 Example: Breadth-first search 26
3.2.4 Encode-Process-Decode . 28

4 SpectralMPNN 35
4.1 On the defense of Spectral architectures for algorithmic execution . . 35

4.1.1 The Message Passing inductive bias 37
4.2 Spectral MPNN . 38

4.2.1 Update function . 38

xi

4.2.2 PolySpectralMPNN . 41

5 Experiments and Results 43
5.1 Experimental details . 44

5.1.1 Hyperparameters for training. 44
5.1.2 Dataset generation . 44
5.1.3 Methodology for model comparison 45

5.2 Results . 46
5.2.1 Analysis of the Fourier Features 49
5.2.2 Ablation Study - Message Passing Layer 49

6 Conclusion 52

References 54

A Graph Signal Processing 68

B Structural Equation Model 71

C Proof of Theorem 3.1 72

D Breadth-first search pseudo-code 75

E Unbiased Homophily [3] 76

F Unbiased Homophily for mask outputs 79

G Stochastic dominance 80

xii

List of Figures

2.1 Input graph and initial embeddings for the GCN worked example. . . 10
2.2 Embedding computation of node A. 11
2.3 Embedding computation of node B. 11
2.4 Embedding computation of node C. 12
2.5 Embedding computation of node D. 13

3.1 BFS Worked Example . 27
3.2 The Encode-Process-Decode paradigm. Image from [4] 29
3.3 Framework for Neural algorithmic execution within the

CLRS30 benchmark[2]. f , P and g denote the Encoder, Processor
and Decoder network, respectively. {Li}Ti=1 denote the loss function
value for each step and Lout denote the output loss. x denotes the
datapoint and its different features are indicated with subscripts. In-
formation from the dataset is represented by the colored boxes in the
diagram, and information generated by the network is represented by
black boxes. 32

4.1 Distribution of Homophily for the Articulation Points classes in dif-
ferent graph sizes. 36

5.1 Fourier decomposition of learned representations of five algorithms . . 49

A.1 Example of a signal over a graph, specifically x = [1, 1,−1,−1]. . . . 68

F.1 Distribution of Homophily for distinct algorithms. 79

xiii

List of Tables

1.1 The two kinds of analogy comparison [5] 3

3.1 Specification of the Breadth-first search algorithm. 26

5.1 Averaged accuracy results for each of the tested models. Here results
are averaged over groups of algorithms as in [2]. Number of algorithms
per group are expressed next to the group’s name. 46

5.2 Pairwise performance comparisons among models using the Mann-
Whitney U test. For each comparison, the number of times each
model outperformed the other and the number of ties are reported.
Bold numbers indicate the model that performed better more frequently. 47

5.3 Accuracy results for each of the tested models on all 30 algorithms. . 48
5.4 Averaged accuracy results for each of the tested models. Here results

are averaged over groups of algorithms as in [2], for per-algorithm
results, see Table 5.5. Number of algorithms per group are expressed
next to the group’s name. 50

5.5 Accuracy results for the conducted Ablation study per algorithm. . . 51

xiv

Chapter 1

Introduction

Over the past decade, Deep Learning has achieved remarkable success across a wide
range of domains, starting a real revolution in the field of Artificial Intelligence.
In computer vision, image classification, object detection, and segmentation, neural
network models can be trained to recognize thousands of different categories and
understand images at a very deep level [6], at times even surpassing human-level
performance [7]. Similarly, in audio processing, once dominated by traditional signal
processing techniques, Deep Learning has led to near-human or even superhuman
performance, with models achieving exceptionally high accuracy across a range of
tasks [8]. Arguably, the most prominent recent successes have been in the field
of Natural Language Processing (NLP), with landmark breakthroughs in machine
translation [9] and sentiment analysis [10]. More recently, large-scale textual foun-
dation models, such as the GPT and Gemini series [11, 12], have demonstrated
remarkable performance across a wide range of downstream tasks. Pre-trained on
massive corpora of unlabeled text, such models can often achieve impressive results
even without additional fine-tuning [13]. These models, commonly referred to as
Large Language Models (LLMs), have enabled the emergence of a new learning
paradigm known as in-context learning [14]. This form of learning occurs at infer-
ence time, where the model, leveraging its extensive self-supervised pre-training, is
capable of producing high-quality results from only a few, or even zero, example
demonstrations provided alongside the input.

Despite the numerous successes of Deep Learning across a wide array of tasks,
several avenues for future improvement remain. In particular, recent research has
increasingly focused on evaluating and enhancing the reasoning capabilities of neural
models [1, 15]. Various definitions have been proposed for both formal and infor-
mal reasoning, and several works aim to connect these two forms [16]. Reasoning
is commonly understood as the ability to combine previously acquired information
in a structured and logically valid manner, progressing from premises to a conclu-
sion through formal rules of inference [17]. Mathematical reasoning [18], coding

1

capabilities [19] and task adaptation [20] are common benchmarks for reasoning.
Equipping current Deep Learning models with robust reasoning capabilities could

help address some of the core limitations of modern LLMs, such as the generation
of false information and hallucinations [21]. By framing reasoning as an additional
constraint on the space of possible conclusions, limiting outputs to those that are
logical consequences and derivable from the given premises, it becomes evident how
such mechanisms could mitigate issues like hallucination.

1.1 System 1 and System 2

A widely used framework for analyzing the cognitive abilities of current neural mod-
els is the Dual-System Theory, introduced in Daniel Kahneman’s Thinking, Fast
and Slow [22]. System 1, associated with perception tasks, represents fast, intu-
itive thinking that operates automatically and with minimal cognitive effort. This
mode of thinking aligns well with the strengths of Deep Learning models, which
typically excel in tasks such as image recognition, language completion, and pattern
detection. In contrast, System 2 is characterized by slow, deliberate, and rational
thinking, often required for tasks involving reasoning, abstraction, and planning. It
is within this domain that current neural models tend to struggle, frequently failing
to demonstrate consistent logical reasoning or to generalize contexts not observed
during training [15, 23].

Diving deeper into the dichotomy between System 1 and System 2, we encounter
the concept of two poles of abstraction [5, 24]. This idea suggests that intelligence
arises from the accumulation of small, meaningful units, often referred to as atoms of
meaning, acquired through experience. These atoms can be reused and recombined
to navigate novel situations. In this view, intelligence is defined as the capacity to
recognize similarities, or analogies, between new problems and previously encoun-
tered patterns, enabling the transfer and application of learned knowledge. These
transferable units of knowledge are known as abstractions.

The two poles of abstraction is the idea that the analogies between abstractions
and novel problems, can be built from one out of two ways, closely aligned to the
dual-system theory.

The first kind of analogy is value-centric analogy [5], where instances are related
through measures of similarity. In this form of reasoning, we relate different examples
based on shared features or functions, gradually forming abstract prototypes that
capture common patterns. This underlies intuitive pattern recognition: rather than
memorizing every example, we group similar instances and rely on the value they
represent to make fast, effective judgments. When humans perform tasks effortlessly
or without conscious deliberation (System 1 thinking), they are often engaging in

2

value-centric analogy, an ability closely tied to perception. Deep Learning models
are particularly well-suited for this kind of analogy-making. By learning latent
embedding spaces, they excel at comparing feature representations of known samples
to those of novel inputs, enabling local generalization in perceptual tasks.

Cognition involves more than the fast, intuitive categorization enabled by value-
centric analogy. A second, more deliberate form of abstraction is known as program-
centric (or structure-centric) analogy [5]. This type of reasoning is slower, more
precise, and centered on identifying exact structural correspondences.

A useful metaphor comes from software engineering: when developers recognize
redundant patterns across different functions or classes, they often refactor by ab-
stracting common logic into reusable components, such as a shared base class or
a generalized function. This process does not rely on visual or perceptual similar-
ity but on matching structural patterns, specifically, subgraph isomorphisms, where
the structure of operations or relationships is preserved across different representa-
tions. Crucially, this kind of comparison cannot be achieved by projecting instances
into an arbitrary latent feature space; rather, it requires symbolic, exact match-
ing of structural elements, making it fundamentally different from the continuous
similarity-based comparisons used in value-centric analogy.

Program-centric analogy underlies System 2 thinking: it is associated to logic,
planning, mathematical reasoning, and formal abstraction. It comes into play when-
ever we analyze systems composed of discrete, relational structures—whether in
symbolic logic, algebra, or causal reasoning. Unlike value-centric analogy, which op-
erates over continuous similarity spaces, program-centric analogy leverages discrete,
rule-based networks of relationships to support rigorous, generalizable understand-
ing. As previously mentioned, this is commonly the kind of analogy neural networks
fail to perform.

Table 1.1: The two kinds of analogy comparison [5]

Value-centric analogy Program-centric analogy

Continuous instances Discrete instances
Instances are associated by distance or similarity measures Instances are associated by exact structural matching

Abstractions are obtained from averaging instances Abstractions are obtained from common instances substructures
Perception & Intuition Reasoning & Planning

Requires a lot of samples to generalize Naturally generalizes

Certain tasks are considered to closely align with System 2 thinking [20, 23],
prompting growing interest within the Deep Learning community in evaluating and
enhancing neural models’ capabilities on such tasks. One prominent example is
algorithmic execution [1], which has led to the emergence of the field known as Neural
Algorithmic Reasoning [4]. This area of research aims to connect neural models and

3

classical algorithms by exploring how neural networks can learn to perform discrete,
structured computations in a generalizable and interpretable manner.

1.2 Neural Algorithmic Reasoning

The growing interest in neural models capable of performing discrete computations
also raises important questions about which architectural features make these net-
works more prone to reasoning. This topic is explored in depth in [1], where the au-
thors introduce the concept of Algorithmic Alignment (Definition 3.2), a framework
for assessing how well a neural network’s structure corresponds to the computational
structure of a given algorithmic task. They argue that better algorithmic alignment
leads to improved sample complexity (Appendix C), allowing models to learn more
efficiently from fewer examples. Moreover, they show that some networks structures
align better with algorithmic problems and should perform better in tasks regarding
discrete computation.

Since then, Neural Algorithmic Reasoning [4] has presented itself as a promising
field for the theoretical study of neural networks, not only due to its emphasis on dis-
crete computation and alignment with reasoning, but also due to the generalization
properties inherent to algorithmic processes. When an algorithm is accompanied
by a proof of correctness, it offers a strong theoretical guarantee: its behavior will
generalize reliably, regardless of the size or structure or size of the input, different
from neural networks, which often struggle to generalize beyond the distributions
encountered during training.

This property of naturally generalizing out-of-distribution [25] makes algorithmic
reasoning a valuable lens for investigating which aspects of neural architectures
contribute to robust generalization beyond the training distribution. Moreover,
out-of-distribution generalization is frequently associated with System 2 cognitive
abilities in neural models, those involving deliberate, structured, and reasoning-
driven processes [24, 26].

Beyond its theoretical strengths, Neural Algorithmic Reasoning also opens path-
ways for adapting algorithmic execution to a broader range of real-world inputs.
Traditional algorithms operate in an abstract space, requiring their inputs to be
well-defined abstract structures. As a result, applying an algorithm to a real-world
problem necessitates a preprocessing step that maps the raw, often noisy input data
into a suitable abstract representation. Neural models offer the potential to learn
this projection automatically, presenting a promising path towards applying algo-
rithms in real-world tasks.

Neural Algorithmic Reasoning has demonstrated strong performance on real-
world tasks that resemble algorithm execution [4]. Studies have shown that neural

4

networks pretrained on algorithmic execution exhibit enhanced performance on real-
world problems that require formal reasoning procedures [27–30], highlighting the
practical benefits of integrating algorithmic priors into learning models.

1.3 Deep Learning over graphs

Message-passing Graph Neural Networks (GNNs) have become the dominant ar-
chitecture for Neural Algorithmic Reasoning [31], largely due to the flexibility of
graph representations and their inherent inductive biases, which have been shown
to facilitate algorithmic execution [1, 32]. However, a well-documented limitation
of message-passing GNNs is the oversmoothing phenomenon [33], where node repre-
sentations become indistinguishable as the network depth increases. This effect has
been linked to the low-pass filtering nature of these models, which causes the loss of
discriminative features when many layers are stacked [34, 35].

Oversmoothing not only limits the model’s ability to capture complex and high-
frequency patterns but also introduces a depth-vs-information trade-off, shallower
networks mitigate oversmoothing but struggle to propagate information across dis-
tant nodes, harming their ability to encode global structure [36].

A promising alternative to mitigate this issue is Spectral GNNs [37], which oper-
ate in the frequency domain using the graph Laplacian’s eigendecomposition. Unlike
message-passing models that focus on local neighborhoods, Spectral GNNs inher-
ently capture global structural information, an essential trait for algorithmic rea-
soning tasks that often rely on the overall structure of the input graph.

Because many algorithms rely on structural properties and global patterns to
guide decision-making, Spectral GNNs offer a natural inductive bias for such tasks.
Yet, to the best of the authors’ knowledge, their application remains largely unex-
plored within the context of Neural Algorithmic Reasoning.

The contribution of this dissertation is twofold. Starting from the hypothesis
that inherent locality bias of Message-Passing Graph Neural Networks (MPGNNs)
limits their capacity for algorithmic reasoning, we aim to evaluate the extent to
which this limitation affects performance and how the aforementioned problem could
be solved. As possible pathway to address on the mentioned issue, we investigate
the potential performance gains achievable from adopting architectures that more
effectively capture the structural properties of input graphs.

While structural graph information is fundamental for algorithmic reasoning,
previous works have outlined the resemblance between the message-passing scheme
and algorithm execution strategies [1, 32]. In order to efficiently encode global
information and retain the useful inductive bias of message-passing, we propose a
novel spectral architecture designed specifically for algorithmic tasks: the Spectral

5

MPNN (Section 4.2). This model leverages the graph Fourier domain to construct
spectral filters guided by the learned message-passing embeddings, thus combining
the strengths of both paradigms—local feature propagation and global structural
awareness.

1.4 Structure of the Dissertation

The thesis is structured as follows: Chapter 2 introduces the foundational concepts
of Deep Learning on graphs and graph signal processing, which are essential for
understanding the architectures discussed throughout the work. Chapter 3 provides
an in-depth overview of the field of Neural Algorithmic Reasoning and presents
the motivation for applying Spectral GNNs to this domain. Chapter 5 details the
experimental results obtained using the proposed architecture and offers a thorough
analysis of the learned embeddings, comparing them across different network types.
Finally, Chapter 6 summarizes the main findings and outlines directions for future
research.

6

Chapter 2

Deep Learning over Graphs

Deep Learning is constantly defined as the field of Artificial Intelligence concerned
with the study of Deep Neural Networks—computational models originally inspired
by the neural mechanisms of the human brain and primarily used for supervised
learning tasks.

Originally, such a field received the name of Connectionist Artificial Intelligence,
and its history goes back to the 1940s with Warren McCulloch and Walter Pitts’s
work [38]. They proposed a non-learnable computational model heavily inspired
by the biological structure of the neurons, their model, although serving a different
purpose from the nowadays Neural Networks is regarded as the very first connection
between computational models and the human brain.

The McCulloch-Pitts model of the neuron was designed to describe brain func-
tions in terms of logical clauses. However, it lacked any mechanism for learning from
data. The introduction of learnability in early Neural Networks is credited to the
work of Donald Hebb, who proposed Hebb’s Rule [39] in Neurobiology. This rule
suggests that the connection between two neurons strengthens when they are acti-
vated simultaneously, forming the basis of learning through association in artificial
neural networks.

The Hebbian Rule, originally formulated within the context of neurobiology, in-
spired the development of learning rules for one of the first and most influential
connectionist models in Artificial Intelligence: Rosenblatt’s Perceptron [40]. Build-
ing upon the idea of the initial Perceptron, researchers hypothesized that stacking
sequences of nonlinear activations could yield more powerful and expressive models
[41]. This intuition, combined with the development of the backpropagation algo-
rithm [42], which enabled the training of multilayer networks, rendered possible the
rise of Deep Learning inside the field of Artificial Intelligence.

The evolution of deep learning has been significantly influenced by the incorpo-
ration of inductive biases [43]. These biases guide models to learn more effectively
by embedding assumptions about the data, thereby enhancing generalization and

7

performance across various tasks.
Convolutional Neural Networks (CNNs) [44] introduce inductive biases such as

locality and translation invariance, making them particularly effective for image pro-
cessing tasks. Recurrent Neural Networks (RNNs) [45] and their variants, like Long
Short-Term Memory(LSTM) networks [46] , incorporate biases toward sequential
data, enabling them to capture temporal dependencies.

Graph Neural Networks (GNNs) [47] extend these concepts by embedding rela-
tional inductive biases, allowing models to learn from data represented as graphs,
such as social networks or molecular structures [31]. These advancements demon-
strate how incorporating specific inductive biases into architectures can lead to more
efficient learning and improved performance over a diverse set of data domains.

This chapter introduces the deep learning concepts fundamental to this disser-
tation, focusing on two distinct types of neural networks on graphs: Spectral and
Spatial Graph Neural Networks. While Spatial GNNs, also known as Message Pass-
ing Graph Neural Networks, are the dominant approach for graph-based tasks, we
begin by presenting Spectral architectures. This choice is motivated by their foun-
dation in Graph Signal Processing (GSP) theory [48], which is a powerful framework
for understanding both Spectral and Spatial methods.

2.1 Spatial Graph Neural Networks

Research on deep learning for graphs has primarily focused on Spatial Graph Neu-
ral Networks (Spatial GNNs), commonly called Message Passing Neural Networks
(MPNNs). These models learn node embeddings by propagating information from
one node to another across the graph, using the representations of the previous layer
to update each node’s features [31, 47].

In a general, simplified formulation, an MPNN operates by iteratively updating
node representations through three key components: message, aggregation, and
readout functions [49].

• Message function (Ψ): During the message passing phase, each node collects
messages from its neighbors. These messages are generated through a message
function Ψ, which transforms the representation of each neighboring node (and
potentially associated edge features) into a message to be sent. The design of Ψ
plays a crucial role in determining what kind of information is communicated
across the graph, for example, whether structural patterns, node attributes,
or edge relationships are emphasized.

• Aggregation function (
⊕

): Next, the aggregation function
⊕

combines
the incoming messages. It is highly desirable that this step possess the prop-

8

erty of being permutation-invariant [50] to ensure the model generalizes across
different node orderings. The choice of aggregation impacts the model’s ex-
pressiveness: simple functions like summation or mean may fail to distinguish
certain graph structures, whereas more complex or learned aggregators can
enhance the model’s discriminative power [51].

• Readout function (Φ): Finally, the readout function Φ uses the aggregated
messages, along with the current state of the receiving node, to produce the
updated embedding. This function governs how a node integrates external
information with its internal state. Its design affects the model’s ability to
capture and propagate long-range dependencies and hierarchical information
across layers.

The general equation for embedding update in message passing models is

ht
i = Φ

 ⊕
vu∈N (vi)

Ψ(ht−1
u), ht−1

i

 (2.1)

where Ψ, Φ and
⊕

represent the message, aggregation, and readout functions,
respectively. The term ht

i denotes the embedding of node vi at the t-th round of
message passing, and N (i) denotes the set of neighbors of the node vi. Equation
2.1 can be extended to incorporate information at the edge and the graph level,
allowing richer representations of features [52].

One of the most prominent MPNN models is the GCN [53], which applies the
following update rule for embedding computations:

ht
i = σ

 W t

|N (vi)|
ht−1
i +

∑
vu∈N (vi)

W t√
|N (vi)||N (vu)|

ht−1
u

 (2.2)

where W t represents the learnable weight matrix at layer t and σ is a non-linear
activation function. The mapping between the components of a GCN layer and the
functions Ψ, Φ and

⊕
in Equation 2.1 is

Ψ(h) =
W t√

|N (vi)||N (vu)|
· h

Φ(h) = σ

(
W t

|N (vi)|
ht−1
i + h

)
⊕

({hu : vu ∈ N (vi)}) =
∑

vu∈N (vi)

hu

By stacking the ht
i embeddings of each node i into a matrix H t ∈ Rn,d, the GCN

9

layer can be implemented as

H t = σ
(
D−1ÃD−1H t−1W t−1

)
(2.3)

where D is the diagonal matrix of node degrees and Ã is the adjacency matrix with
self-loops.

The formulation in Equation 2.3 is preferable for dense adjacency matrices Ã, as
it allows for fast embedding computation using GPUs.

Worked Example - GCN

Figure 2.1: Input graph and initial embeddings for the GCN worked example.

For clarity, we will provide a worked example of one execution of the GCN layer,
for nodes with one-dimensional embeddings. Figure 2.1, presents the input graph,
defined by adjacency matrix A and initial embeddings h0 for execution of the worked
example. Moreover, we will assume the GCN layer with estimated parameter W 0 =

15 and non-linear activation function σ = ReLU.

A =

A B C D

A 0 1 1 0

B 1 0 1 0

C 1 1 0 1

D 0 0 1 0

h0 =
A B C D[]
5 10 3 0

For calculation simplification all the calculated messages are rounded down to
two decimal places.

1. Node A update:

10

Figure 2.2: Embedding computation of node A.

The update of node A in the input graph, merges together messages from
nodes B and C, following the GCN update rule (Equation 2.2), its subsequent
embedding h1

A is

h1
A = ReLU

(
15

2
· 5 +

(
15√
2 · 2

· 10 + 15√
2 · 3

· 3
))

h1
A = ReLU (37.5 + 75 + 18.37)

h1
A = 130.87

as the number of neighbors N (A) = 2, N (B) = 2 and N (C) = 3.

2. Node B update:

Figure 2.3: Embedding computation of node B.

The update of node B, merges together messages from nodes C and A, its

11

subsequent embedding h1
B is

h1
B = ReLU

(
15

2
· 10 +

(
15√
2 · 2

· 5 + 15√
2 · 3

· 3
))

h1
B = ReLU (75 + 37.5 + 18.37)

h1
B = 130.87

as the number of neighbors N (B) = 2, N (A) = 2 and N (C) = 3.

3. Node C update:

Figure 2.4: Embedding computation of node C.

The update of node C, merges together messages from nodes A, B and D, its
subsequent embedding h1

C is

h1
C = ReLU

(
15

3
· 3 +

(
15√
3 · 2

· 5 + 15√
3 · 2

· 10 + 15√
3 · 1

· 0
))

h1
C = ReLU (15 + 30.61 + 61.23 + 0)

h1
C = 106.84

as the number of neighbors N (C) = 3, N (A) = 2, N (B) = 2 and N (D) = 1.

4. Node D update:

12

Figure 2.5: Embedding computation of node D.

The update of node D, receives messages only from node C as it is solely
neighbor in the graph, its subsequent embedding h1

D is

h1
D = ReLU

(
15 · 0 +

(
15√
3 · 1

· 3
))

h1
D = ReLU (0 + 25.98)

h1
D = 25.98

as the number of neighbors N (D) = 1 and N (C) = 3

At the end of the first execution layer the calculated embeddings for each node
are

h1 =
A B C D[]

130.87 130.87 106.84 25.98

The produced embeddings h1 can then be fed to a subsequent message passing
module or be further processed for prediction of a given task.

2.1.1 Over-smoothing in Spatial GNNs

A common phenomenon observed when training Spatial GNNs is over-smoothing,
where node representations converge to the same embedding as the number of layers
in the network increases [33]. Understanding and mitigating over-smoothing has
been a prominent focus in graph learning research, with theoretical works examining
it [54–56] and practical attempts to alleviate its effects [57–59].

Over-smoothing places a burden on the depth of Spatial GNNs, reducing the
model’s ability to capture complex patterns within the graph structure. An MPNN’s

13

ability to encode long-range graph structural information relies on how many mes-
sage passing layers it possesses, by limiting the GNN’s depth, over-smoothing ham-
pers their capacity to effectively encode global information, as capturing such struc-
tures relies on multi-hop information propagation [36].

This phenomenon is intrinsically associated with the low-pass filter property of
Spatial GNNs [34, 35]. The low-pass filter issue in GNNs refers to their tendency
to favor or amplify low-frequency signals (i.e., smooth variations across the graph)
while suppressing high-frequency signals (i.e., sharp differences between neighboring
nodes). This phenomenon is rooted in how GNNs aggregate information from neigh-
bors of a node during message passing. Notably, the graph Laplacian, described in
Section 2.2.1, smallest eigenvalue is always zero, with the corresponding eigenvector
consisting of equal values, representing the component with the lowest frequency.

Due to such a characteristic, Spatial GNNs rely on the homophily of input graphs.
Homophily is a fundamental property in many real-world datasets: it assumes that
connected nodes often belong to the same class or present similar features [60]. The
inductive homophily bias of spatial GNNs can place a burden on their performance
under heterophilic scenarios (i.e. settings where connected nodes present dissimi-
lar classes). Recent lines of research show how graph-agnostic models, such as an
ordinary MLP, can outperform MPNNs in several heterophilic scenarios [61–64].

2.2 Spectral Graph Neural Networks

Spectral GNNs are a distinct approach to the dominant message passing framework
for learning on graphs. Unlike Spatial Architectures, defined in the Section 2.1, their
definition of convolution on graphs relies on the concepts of Spectral Graph Theory
[65]. While convolution in MPNNs works spatially, by aggregating representations
in a node’s neighborhood, Spectral architectures act directly on the Graph Fourier
Transform by attributing different weights to features in the frequency domain.

2.2.1 Graph Signal Processing

Graph Signal Processing (GSP) [48] is the field connecting Signal Processing and
Graph Theory. The development of GSP has provided researchers with tools to study
and process signals in more general and complex domains, such as social networks,
sensor networks, and biological systems, where data can naturally be encoded as
graphs.

This advancement was made possible through the study of an object in Graph
Theory: the graph Laplacian and its eigenvalue decomposition.

14

Graph Laplacian

Definition 2.1 (Laplacian Matrix) [47] Let G = (V , E) be a given graph with
adjacency matrix A and |V| = n, its Laplacian Matrix L is defined as:

L = D − A (2.4)

where D is the diagonal degree matrix D = diag(d(v1), d(v2), ..., d(vn))

Let x be a vector where xi ∈ R is the element associated to vi ∈ V and N (vi)

be the neighborhood of node v. A fundamental property of the graph Laplacian L

is the following

xTLx =
1

2

∑
vi∈V

∑
vj∈N (vi)

(xi − xj)
2 (2.5)

.
A proof for Equation 2.5 can be found on Appendix A Proof A.1.
Equation 2.5 states that xTLx is the sum of squared differences between adjacent

nodes. In other words, xTLx quantifies how distant signals in adjacent nodes are
from each other. Consequently, it serves as a measure of the smoothness of the
graph signal, with smaller values indicating smoother signals over the graph.

Eigenvalue Decomposition

The graph Laplacian L admits an eigenvalue decomposition L = UΛUT [66, 67],
where Λ = diag(λ1, λ2, ..., λn) is a diagonal matrix with the eigenvalues of L and
U is a square n × n matrix where the ith column is ui the ith eigenvector of L. If
L is symmetric (graph is undirected), the eigenvalues {λi}ni=1 are real and usually
ordered λ1 < λ2 < ... < λn.

Graph Fourier Transform

Similar to the traditional Fourier Transform, the Graph Fourier Transform (GFT)
[68] aims at decomposing a graph signal into a weighted sum of orthogonal bases.
From the observation that λi = uT

i Lui, we note that the eigenvalues of L repre-
sent the frequency/smoothness of the corresponding eigenvectors. Such observation
naturally gives rise to a definition of Fourier Transform in graphs.

Definition 2.2 (Graph Fourier Transform) Let G = (V , E) be a given graph
with graph Laplacian L = UΛUT , the Graph Fourier Transform (GFT) and inverse
GFT of a signal x over G are, respectively

x̂ = UTx, x = Ux̂ (2.6)

15

where x̂ are the Fourier coefficients of the signal x.

Definition 2.2 is consistent with the traditional definition of the traditional
Fourier Transform as a decomposition of the signal on the eigenfunctions of the
1-dimensional Laplace operator [68].

From the perspective of GFT, filtering a graph signal can be defined in the
frequency domain, by a function g(λ) which amplifies or attenuates each of the
frequency components {λi}ni=1 [69]

h = Ug(Λ)UTx (2.7)

where h is the output of the filter and g(Λ) = diag(g(λ1), g(λ2), ..., g(λn))

For a more thorough presentation of Graph Signal Processing, see Appendix A
and the works [47, 48, 65, 68].

2.2.2 Spectral GNN architectures

The idea of a Spectral GNN’s emerges from the definition of a graph filter in Equa-
tion 2.7. By having a filter gθ, parametrized by θ, one could apply gradient-based
techniques to optimize a loss function with respect to θ. Different neural network
architectures define different structural choices for gθ and promote different kinds of
inductive bias [70, 71].

For example, one of the first networks that works as a graph spectral filter was
proposed in [72]. Following the terminology mentioned above, a graph G = (V , E) is
embedded with a node signal h0 ∈ Rn×d, where n = |V| is the number of nodes.

The proposed network follows a construction where each of the layers l =

1, . . . , K with hidden dimensions {dl}Kl=0, generates a hidden representation hl
j ∈ Rn

for each feature j in the following way

ht
j = σ

(
U

dt−1∑
i=1

Gt
i,jU

Tht−1
i

)
, j = 1...dt (2.8)

where Gl
i,j, with i = 1, . . . , dl−1 and j = 1, . . . , dl, is a diagonal matrix with trainable

parameters {θli}ni=1

Gl
i,j = [θl1, θ

l
2, . . . , θ

l
n]I

One of the main drawbacks regarding Spectral GNNs is the reliance on eigen-
value decomposition of the Laplacian matrix, which is of complexity O(n3), where
n is the size of the graph [66]. The computational complexity of the eigenvalue de-
composition places a burden on wide application of Spectral architectures on larger
graphs.

16

Polynomial filters

To circumvent direct decomposition of the graph Laplacian, current approaches
implement filtering in the frequency domain as polynomials of the graph Laplacian
L [37, 73]. Polynomial filters are weighted sums of powers of the eigenvalue matrix
Λ, defined as

gθ(Λ) = θ0I + θ1Λ ++θ2Λ
2 + ...+ θKΛ

K

and can be seen as a special case of Equation 2.7, where the filter gθ(Λ) is a poly-
nomial function.

By noting that

Ugθ(Λ)U
T = U(θ0I + θ1Λ + θ2Λ

2 + ...+ θKΛ
K)UT

= θ0UIUT + θ1UΛUT + θ2UΛ2UT + ...+ θKUΛKUT

= θ0I + θ1L+ θ2L
2 + ...+ θKL

k

it is possible to see that the design of polynomial filters in the spectral domain can
be done directly as polynomials of the Laplacian L, through gθ(L) = θ0I + θ1L +

θ2L
2 + ...+ θKL

k .
However, one major drawback of plain implementation of polynomial filters is

the non-orthogonality of the polynomial terms {I, L, L2, . . . , Lk}, which may affect
model convergence. One approach, taken by [73], uses Chebyshev expansion to
construct a polynomial filter. It has been shown that the orthogonality of Chebyshev
terms greatly assists training [70]. By updating the embeddings the same way as
Equation 2.8, ChebNet constructs the matrix Gt

i,j as

Gt
i,j =

K∑
i=1

θti,j,kTk(L̃) (2.9)

where L̃ = 2L
λmax
− I is the scaled Laplacian, and Tk(x) = 2xTk−1(x)− Tk−2(x), with

T0(x) = 1 and T1(x) = x, the Chebyshev terms. And the j-the feature of embedding
ht
j ∈ Rn is calculated as

ht
j =

dt−1∑
i=1

Gt
i,jh

t−1
i

.
In comparison to Spectral GNNs, the message passing scheme of Spatial GNNs

differ in several aspects.

• Spatial and spectral architectures encode different information:
While spatial GNNs aggregate node features layer by layer, emphasizing lo-
cality and restricting a node to capture information within a fixed distance,

17

spectral GNNs work on the Eigenvalue Decomposition of the graph Laplacian,
which naturally carries structural information.

• Spatial GNNs are biased toward low-pass filtering [34, 35]: Theo-
retical works on spatial GNNs (more specifically GCN [53]) have shown how
such models bias the learned embeddings towards low-frequency components.
Message passing models work by iteratively multiplying the augmented adja-
cency matrix, which resembles a low-pass filter on graphs [35]; this issue also
leads to the phenomenon of oversmoothing in spatial GNNs [33]. However,
constructing spectral GNNs allows them to learn arbitrary filters on graphs,
filtering out the appropriate frequencies for the task at hand.

• Spectral architectures are less scalable: The time complexity of the eigen-
value decomposition of the Laplacian graph places a burden on the general
applicability of spectral GNNs. Current approaches attempt to avoid explicit
computation of the Fourier features by approximating the graph Laplacian
decomposition with polynomial filters [37, 73].

2.3 Permutation-Equivariance in Graph Neural

Networks

A desirable property of modules that leverage the graph structure for embedding
computation is permutation equivariance [50]. Unlike lists, a graph’s structure,
defined by its adjacency matrix, is invariant to any particular ordering of the nodes.

Therefore, any reasonable model operating on a graph should produce node
embeddings that are invariant to the order in which the nodes are listed.

Definition 2.3 (Permutation Equivariance in GNNs) Consider a network
module N operating on a graph with N nodes. The module receives as input an ad-
jacency matrix A ∈ {0, 1}N×N and an embedding matrix H t ∈ RN×d, and produces
an output embedding matrix H t+1 ∈ RN×d. The module N is said to be permutation
equivariant if, for any permutation matrix P ∈ {0, 1}N×N ,

PH t+1 = N (PAP T , PH t)

Permutation equivariance ensures that the learned representations depend only
on the graph topology and features—not on how data is arranged in memory and
serves as additional inductive bias for tasks being executed over graphs [50].

Any architecture fitting into the design space of Spatial GNNs (Equation 2.1)
[49] or the update function of Spectral GNNs (Equation 2.7) has the property of

18

being permutation equivariant over the set of nodes.

2.4 Out-of-Distribution (OOD) generalization

The techniques discussed earlier in this chapter have demonstrated performance
surpassing human-level capabilities on specific tasks [74, 75]. However, these models
are typically evaluated in controlled environments that may not fully reflect the
distributions encountered during real-world deployment. As a result, there is a
growing body of research focused on enhancing model robustness to distribution
shifts.

Out-of-Distribution (OOD) generalization refers to the ability of a model to be
robust to distribution shifts on test data [25]. Despite the importance of OOD gen-
eralization, most standard machine learning algorithms are theoretically grounded
in the i.i.d. assumption, presuming that the train and test samples are indepen-
dent and identically distributed, violating such a established assumption requires
the development of novel techniques that extend beyond traditional ML.

The problem with the current optimization framework is that it is solely fo-
cused on minimizing an error metric from training samples, consequently exploiting
spurious correlations and confounding factors, without necessarily capturing the
underlying true relationships among the data. From this perspective, OOD general-
ization can be seen as attempt to drive models towards capturing the relationships
that exist under any environment, i.e. the causal relationships.

Given the interest in OOD generalization, many recent works have attempted
to formalize it into a theoretical framework [76, 77]. One of the most prominent
approaches relies on the theory of Invariant Learning, i.e. a predictor which is
invariant across different environments. By focusing on the aspects of the predictors
that do not change with environments, models are able to better generalize to unseen
environments.

The invariance assumption can be expressed mathematically in various ways [78–
80]. A common feature across all works attempting to formalize Invariant Learning is
its intrinsic connection to the theory of causation. In fact, invariance can be viewed
as a relaxation of causality. By assuming that the Structural Equation Model (SEM)
B remains the same across all environments Assumption 2.1 and treating environ-
ments as interventions on covariate variables, the problem of Invariant Learning
reduces to the issue of identifiability [81] in Causal Inference.

Assumption 2.1 [82] The environment-specific structural equation model:

Y e ← fY (X
e
pa(Y), ϵY) (2.10)

19

remains the same across all possible environments e ∈ E, that is fY and pa(Y)

are environment independent functions and ϵY has the same distributions for all
environments.

By allowing Y e and Xe distributions to change with the environments e ∈ E , the
interest relies in modeling the function fY and identifying the parents of Y in the
causal graph pa(Y). In other words, from a causal perspective, OOD generalization
involves modeling the interventional distribution P (Y |do(X = x)), allowing the
model to remain robust under changes to the distribution of input variables across
environments.

Beyond its theoretical formalization, successful Out-of-Distribution (OOD) gen-
eralization fundamentally relies on identifying the true causal relationships between
exogenous and endogenous variables, rather than exploiting spurious correlations
present in the data. The main topic of this dissertation, Neural Algorithmic Rea-
soning, addresses OOD Generalization with the objective to learn such causal and
invariant structures over algorithmic tasks. The specific way in which OOD Gener-
alization is explored in Neural Algorithmic Reasoning is described Section 3.2.2.

20

Chapter 3

Neural Algorithmic Reasoning

The current chapter addresses the field of Neural Algorithmic Reasoning [4], the
main topic of this dissertation. Neural Algorithmic Reasoning (NAR) is concerned
with the task of embedding an artificial neural system with the ability to execute
algorithms. More specifically, the kind of computation found on undergraduate
classical algorithms textbooks [83], for the purposes of this work coined here as
"Classical Computation", is a form of breaking a complex and intricate problem
into smaller simple problems with abstract inputs.

3.1 Algorithmic Alignment [1]

One of the landmark papers of the field, "What Can Neural Networks Reason
About?" [1] discourses about the issue of Algorithmic Alignment and which archi-
tectural aspects of Neural Networks contribute to it. The authors main argument
relies on the (contestable, however reasonable) assumption that reasoning processes
resemble algorithm execution. Therefore, a network exhibiting good Algorithmic
Alignment would only need to learn small and simple algorithm steps to thrive on
reasoning tasks.

Moreover, intuitively and as seen in previous works [84, 85], there exists an
intrinsic relation between reasoning and the generalization ability of current artificial
neural networks. The article builds upon this idea by showing that the Algorithmic
Alignment improves sample complexity as defined in the PAC Learning framework
[86].

Definition 3.1 (PAC Learning and Sample Complexity [86]) For a fixed er-
ror parameter ϵ > 0 and failure probability δ ∈ [0, 1], a function g is said to be
PAC-learnable if there exists a learning algorithm A that can generate a function
f = A({(xi, g(xi))}Mi=0) from M i.i.d. samples {(xi, g(xi))}Mi=0 drawn from distribu-

21

tion D. The function g is (M, ϵ, δ)-learnable with A if

Px∼D(∥f(x)− g(x)∥ < ϵ) < 1− δ

The sample complexity CA(g, ϵ, δ) is the minimum M for which g is (M, ϵ, δ)-
learnable with A.

The PAC-learning framework (Definition 3.1) serves as a foundation for defining
a measure of Algorithmic Alignment. Formally, [1] asserts that neural networks with
a limited number of modules can simulate an algorithm’s execution with low sample
complexity.

Definition 3.2 (Algorithmic Alignment [1]) Given a fixed sample size M , let
g be a function decomposable into n modules, f1 ◦ f2 ◦ ... ◦ fn, and let N be a
neural network composed of n corresponding modules, N1, ...,Nn. Then, N (M, ϵ, δ)-
algorithmically aligns with g if there exist learning procedures {Ai}ni=0 for the Ni’s
such that

n× CAi
(fi, ϵ, δ) ≤M

Different choices of learning procedures {Ai}ni=0 and network modules {Ni}ni=0

can lead to better Algorithmic Alignment, that is, smaller M .
From the definition of Algorithmic Alignment, the authors of [1] prove that an

algorithmic procedure g can be PAC-learned, under the assumption of a network
N algorithmically aligned to g. More generally, they show that under some mild
conditions, an algorithmically aligned model achieves reasonable sample complexity,
i.e. good generalization.

Theorem 3.1 (Algorithmic Alignment improves Sample Complexity [1])
For a fixed error parameter ϵ > 0 and failure probability δ ∈ [0, 1]. Let
{xi, g(xi)}Mi=1 ∼ D be a dataset sampled from distribution D. Suppose N1, ...,Nn are
the network’s N MLP modules and N and g (M, ϵ, δ)-algorithmically align through
functions f1, f2, ..., fn. Under the listed conditions, g is (M,O(ϵ), O(δ))-learnable
by N .

1. Algorithm Stability: Let A be the learning algorithm for Ni’s. Assume
f = A({xi, g(xi)}Mi=1) and f̂ = A({x̂i, g(xi)}Mi=1). For any x,

∥∥∥f(x)− f̂(x)
∥∥∥ ≤

L0maxi ∥xi − x̂i∥, for some L0.

2. Sequential Learning: The network modules are trained sequentially, that is,
the first module N1 has input samples {x̂1

i , f1(x
1
i)}Mi=1. For subsequent modules,

j > 1, the input x̂j
i of module Nj is the output of the previous modules, and

the labels are the ground-truth correct labels (f1 ◦ f2 ◦ ... ◦ fj)(x1
i).

22

3. Lipschitzness: The learned functions f̂j satisfy
∥∥∥f̂j(x)− f̂j(x̂)

∥∥∥ ≤
L1 ∥x− x̂∥, for some L1.

The proof for the previous proposition is provided in Appendix C, as well as in
the work where it was originally stated [1].

Theorem 3.1 provides a guarantee that an algorithmic procedure g can be effec-
tively learned by a network N if they are both algorithmically aligned. Moreover,
it not only provides a guarantee of learnability, but also states that the algorithmic
alignment value M defines the sample complexity in the PAC learning framework,
that is, with fixed ϵ and δ better algorithmic alignment leads to better sample com-
plexity of the algorithmic procedure g.

3.2 The CLRS Algorithmic Reasoning Benchmark

[2]

Historically, benchmark datasets have been of fundamental importance in the field
of Deep Learning, serving as standardized tools for evaluating and comparing novel
state-of-the-art models. Examples range from image modeling, such as the ImageNet
[87] and MS COCO [88], to text translation [89] and general reinforcement learning
[90].

Benchmark datasets are crucial not only for providing a common reference point
so as to compare different deep learning models. They also play a role in driving
the development of the field as a whole. By creating handcrafted datasets, the re-
search community is able to tackle the specific aspects of problems where Neural
Networks struggle. A notable recent example is the Abstraction and Reasoning Cor-
pus [20], which attempts to encode the challenges of Artificial General Intelligence
by evaluating the efficiency of skill acquirement from models.

Aiming at the implementation of such a benchmark for Neural Algorithmic Rea-
soning, the newly proposed CLRS30 Benchmark [2] has been developed. The dataset
consists of sample executions from 30 cherry-picked algorithms from the seminal
book Introduction to Algorithms [83]. These algorithms are divided in a taxonomy
of 8 categories:

Sorting: Insertion Sort, Bubble Sort, Heapsort [91] and Quicksort [92].

Searching: Minimum, Binary Search and Quickselect [93]

Divide and Conquer: Find Maximum Subarray [94].

Greedy Algorithms: Activity selection [95] and Task Scheduling[96].

23

Dynamic Programming: Matrix chain multiplication, Longest Common
Subsequence and Optimal Binary Search Tree [97].

Graphs: Depth and Breadth first searches, Topological Sorting [98], Articu-
lation Points, Bridges, Kosaraju’s strongly-connected components algorithm
[97], Kruskal’s and Prim’s Minimum Spanning Tree algorithms [99, 100],
Bellman-Ford and Dijkstra’s algorithm for shortest path [101, 102] and the
Floyd-Warshall algorithm for all-pairs shortest path [103].

Strings: Naive string matcher and Knuth-Morris-Pratt (KMP) string matcher
[104].

Geometry: Segment intersection and Graham’s and Jarvis’ planar convex
hull algorithms [105, 106].

3.2.1 Structure of the Dataset

Graphs are highly general and versatile algebraic structures, capable of representing
a wide variety of data and relationships. This flexibility enables them to encode
numerous data structures commonly used in traditional algorithms. Furthermore,
theoretical results have demonstrated that graph neural networks align well with the
principles of dynamic programming [32]. As a conclusion from these observations,
the developers of CLRS30 [2] opted to implement the dataset using a graph-oriented
approach.

Algorithms are represented as a set of vertices and edges, with information (fea-
tures) over them which describes the steps of the algorithm’s execution. Every
feature over the graph respect the following categorization:

Stage: Each feature is associated with a specific stage, representing a step in
the algorithm’s trajectory. The information required for algorithm execution
is classified into three types: inputs, outputs, and hints. Features categorized
as inputs or outputs correspond to single-step information, while hints pro-
vide a time-series of states that capture the evolution of the data structure
throughout the algorithm’s execution.

Location: Each feature exists in either node, edge or graph level.

Type: Each feature belongs to one of five data types, these types define the
appropriate way to encode and decode it, as well as the specific loss function
to be applied for its prediction.

scalar : Floating-point scalar value; i.e. edge weights, positions.

24

categorical : Categorical feature over a determined number of possible
classes, each node is attributed a one-hot vector with a single 1 in the in-
dex associated to the class.

mask : Categorical feature over two classes, each node is attributed a value
of 0 or 1.

mask_one: Categorical feature over two classes, each node is attributed a
value of 0 or 1, with the constraint that a single node has value 1 and all the
others are 0.

pointer : Categorical feature over the n nodes.

3.2.2 How the CLRS30 benchmark addresses OOD general-

ization

As stated earlier, the concerns of Neural Algorithmic Reasoning go beyond accurate
predictions of input-output pairs [1], the issues lie in the ability of neural systems
to precisely mimic algorithmic execution, i.e. processing of discrete information.

Moreover, it has been empirically seen that plain prediction of input-output
pairs limits the model’s generalization exclusively to in-distribution samples [107–
109]. For instance, a neural network trained to perform sorting on arrays within a
specific length range in the training dataset often struggles when tasked with inputs
that fall outside this range.

Generalization is not a concern in classical computer science. If provided with
proof-of-correctness, algorithms can guarantee generalization to any input in agree-
ment with the expected input structure. Ideally, the same property should be ob-
served in neural models mimicking algorithmic execution.

The mechanism to better approximate neural networks and algorithms, beyond
input-output prediction, is through hint features present in the CLRS30 dataset.
Hints are the kinds of features in the dataset that capture intermediate states
throughout algorithmic execution. Unlike inputs and outputs, hints include an ad-
ditional dimension for time or steps, and can thus be seen as a time series of states
an algorithm goes through while it is executing.

Such hint features are presented as intermediate targets the network is trained to
predict, successful prediction of hints is a great indicator the network has captured
the underlying reasoning process of the presented algorithm.

In addition, it is theoretically reasonable to believe that predicting hints con-
strains the optimized parameters of neural networks to align more closely with the
actual algorithmic execution, steering them away from confounding factors and spu-
rious correlations present in input-output pairs. Such observation has also been

25

empirically demonstrated in [110–112].

3.2.3 Example: Breadth-first search

The Breadth-first search algorithm [113] is one of the simplest and most fundamental
algorithms for graph traversal. Given a graph G = (V , E) and a source node s ∈ V as
inputs, BFS explores the graph by systematically visiting nodes in layers. Starting
with the source node, it adds all its neighbors to a queue. Nodes are then explored in
the order they are added to the queue, with the earliest added nodes being explored
first.

In the first iteration, all neighbors of the source node s are enqueued. In each
subsequent iteration, a node v ∈ V is dequeued, and its neighbors are then enqueued.
This process continues until every node in the graph has been visited. A pseudocode
of the algorithm is available at Algorithm 1 in Appendix D.

Breadth-first search algorithm is represented within the CLRS30 framework with
the following features and their specification is presented in Table 3.1:

• s: The source node from where the search is going to start.

• A: The adjacency matrix of the input graph.

• π: A list with one entry for each of the nodes, indicating a node’s predecessor
in the graph.

• reach: A binary-valued list with one entry for each of the nodes, with 0’s for
nodes that haven’t been reach yet and 1’s for all the nodes which have already
been reached.

• πh: A list with one entry for each of the nodes, indicating a node’s predecessor
in the graph. Such feature differ from the original π in the sense that it exists
in the hints level and is updated along the algorithm’s trajectory

Feature Stage Location Type

s inputs nodes mask_one
A inputs edges mask
π outputs nodes pointer

reach hints nodes mask
πh hints nodes pointer

Table 3.1: Specification of the Breadth-first search algorithm.

A worked example of the BFS algorithm is shown in Figure 3.1. The algorithm
begins with the standard inputs for Breadth-First Search, the graph, represented

26

(a) BFS inputs (b) BFS hints (c) BFS outputs

Figure 3.1: BFS Worked Example

by its adjacency matrix A, and the source node s. In the CLRS30 framework, the
source node s is of type mask_one, meaning it is encoded as a binary vector of
length equal to the number of nodes in the graph. This vector contains all zeros
except for a single one at the index corresponding to the source node.

During the execution, the algorithm maintains two auxiliary lists, reach and πh,
both categorized as hints in the CLRS30 framework, as shown in Figure 3.1. The
reach list is of type mask, and is represented as a binary vector, entries corresponding
to visited nodes are set to 1, while unvisited nodes remain at 0. The πh list stores the
parent (or predecessor) of each node according to the breadth-first search traversal.
It is of type pointer, meaning it is a list of integers where each entry indicates the
index of the parent node in the input graph.

The execution traces of the hints for the input graph presented in Figure 3.1a is

reach1 =
[
0 1 0 0 0

]
→ reach2 =

[
1 1 1 0 1

]
→ reach3 =

[
1 1 1 1 1

]

π1
h =

[
0 1 2 3 4

]
→ π2

h =
[
1 1 1 3 1

]
→ π3

h =
[
1 1 1 2 1

]
The output of the algorithm is a list of parent nodes for each node in the graph,

following the BFS traversal. This output is stored in a separate list, denoted by π,
which matches the final state of πh at the end of the algorithm’s execution.

A single datapoint in the CLRS30 benchmark consists of three components:
inputs, hints, and outputs. In the case of the input graph shown in Figure 3.1a, this
datapoint would be represented by the following data structure:

27

inputs :

A =

0 1 0 0 1

1 0 1 0 1

0 1 1 1 1

0 0 1 1 1

1 1 1 1 1

s =

[
0 1 0 0 0

]

hints :

reach =

0 1 0 0 0

1 1 1 0 1

1 1 1 1 1

πh =

0 1 2 3 4

1 1 1 3 1

1 1 1 2 1

outputs :
{
π =

[
1 1 1 2 1

]
3.2.4 Encode-Process-Decode

An important aspect for solving the CLRS30 benchmark is the kind of architecture
being applied to the problem. Graph Neural Networks from Chapter 2 arise as
natural models for such tasks, as many algorithms within the dataset are inherently
designed to operate on graph-structured data.

However, plain application of a GNN does not fully fulfill the goals of Neural
Algorithmic Reasoning. This limitation stems from the nature of the data in the
CLRS30 benchmark, where inputs and intermediate states correspond to algorithms
operating in a discrete domain. Neural networks, on the other hand, are designed to
process continuous vector representations, and a growing body of research highlights
the suboptimal performance of neural networks when working directly with discrete
data [114].

Furthermore, we would like models trained for algorithmic tasks, to be gener-
alizable over algorithms and over tasks that closely resemble algorithmic execution
[4]. In a way, that a single model could be able to execute many distinct algorithms
[115] while also being fine-tuned to handle real-world tasks across a diverse range of
inputs.

In order to overcome such difficulties with plain application of GNNs, the usual
framework used within the CLRS30 is the Encode-Process-Decode [116], where in-

28

Figure 3.2: The Encode-Process-Decode paradigm. Image from [4]

puts are initially transformed into continuous vector representations by an Encoder
model. These representations are then passed to a Processor, typically a GNN,
which processes the data. Finally, the Decoder converts the outputs back into the
discrete states of the algorithm.

Such a framework provides the flexibility to independently design and optimize
each component—Encoder, Processor, and Decoder—based on the specific re-
quirements of the task. If the interest relies on developing a single model capable of
executing a diverse set of algorithms A = {A,B,C, ...}, this framework allows you to
develop algorithm specific encoder and decoders, respectively fA = {fA, fB, fC , ...},
gA = {gA, gB, gC , ...}, and a single Processor P capable of processing inputs from
every encoder f ∈ fA and providing representations for every decoder g ∈ gA [115].

On the other hand, applying models trained on algorithmic executions to natu-
ral inputs is also possible. Suppose a model g(P (f(x))) trained to predict x, where
x is an algorithmic input, now suppose x̃ is a natural input in a task that closely
resembles the algorithm generating x. By fixing the processor P and carefully con-
structing encoder f̃ and decoder g̃ for processing raw data input x̃, the model could
be fine-tuned for this downstream task [30, 117–119].

Encoder and Decoder networks

There is no restriction as to the kind of network used for encoding or decoding the
algorithmic states. However, so as to keep the models as simple as possible and place
focus on the Processor, usually such models are plain matrix multiplications with
no non-linearities (linear regressions). All of the Encoder and Decoder models
throughout this dissertation follow the same implementation from the open github
repository https://github.com/google-deepmind/clrs of [2] with changes only
to match the distinct frameworks used.

29

https://github.com/google-deepmind/clrs

The Encoder network f , is composed of k = 1, 2, ..., n distinct linear layers Wk

one for each of the algorithm input features xinput,k, f then works by summing up
each of these linear transformations

f(xinput) =
n∑

k=0

Wkxk

The latent generated features h = f(xinput) of arbitrary dimension will the be
fed to the Processor.

One important remark, is that GNNs can process features in the node, edge
and graph levels, and algorithmic features also exist in all three levels as stated
in Section 3.2.1. However, while a graph is composed of n nodes it has at most(
n
2

)
edges. Therefore, due to dimension mismatches these latent features cannot

be summed, and we maintain separate representations for nodes, edges and graph
features.

hi = fnode(xinput, i) =
n∑

k=0

W node
k xk,i, ∀i ∈ V

hij = f edge(xinput,ij) =
n∑

k=0

W edge
k xk,ij,∀i, j ∈ V

hgraph = f graph(xgraph) =
n∑

k=0

W graph
k xk

where i, j are indices over the set of nodes V with cardinality |V| = N . The encoding
process generates three latent tensors of arbitrary latent dimension d and sizes (N, d),
(N,N, d) and (d), for nodes, edges and the graph respectively.

Analogously, Decoder models work in a similar way. For a given algorithm,
there exists one decoder gi for each predicted feature i. Such networks are linear
transformations of the Processor’s output p.

gi = Wip

In the Decoder phase, the processed features pti, p
t
i,j are decoded back into dis-

crete states, so as to predict next step hints xhints,t and algorithm outputs xoutput:

x̂hints,t, x̂output = g({pti, pti,j|∀i, j ∈ V})

The generated hints x̂hints,t are then aggregated with the inputs and provided as
inputs for the next step prediction.

As each of the features need to be predicted, the aggregation happening in the
Encoder does not show up in the Decoder. The important matter at play with the

30

Decoder models is the output dimension, which needs to be equal to 1 for features
of type scalar and mask, equal to the number of nodes N for features of type mask_-
one and pointer and equal to the arbitrary number of classes for features of type
categorical, this is so that the output dimension matches the target distributions for
cross-entropy loss (mean-squared error for the case of scalar ’s).

Processor Network

Arguably the most important component in Encode-Process-Decode framework
[116], is the Processor network P . While Encoder f and Decoder g networks
work as components mainly for projection between continuous and discrete states,
the Processor bears the majority of the computational workload associated with al-
gorithmic execution. Moreover, it serves as the primary design space for developing
new architectures tailored to neural algorithmic reasoning.

Graph neural architectures are the commonly chosen model for the Processor.
This is in part due to the structural generality of graphs and their capability of repre-
senting different kinds of data structures, thus providing the model with additional
structural inductive bias when computing embeddings. Additionally, theoretical
works outline the similarities between the message passing scheme and algorithmic
implementation techniques [1, 32].

From the encoded features ht
i, h

t
ij, h

t
g at step t, provided from Encoder network.

The process continues by using these embeddings as inputs to the Processor net-
work P , which is typically implemented as a GNN message passing layer [31].

pti, p
t
i,j = P (ht

i, h
t
ij, h

t
g, p

t−1
i , At) (3.1)

where At is the adjacency matrix at step t and pti, p
t
i,j are the node and edge embed-

dings from the Processor network.
Figure 3.3 presents a diagram illustrating the entire process of algorithmic execu-

tion within the CLRS30 framework. To summarize the process: at each time step,
inputs and predicted hints are concatenated, and each feature undergoes an En-
coder network, typically a linear projection, which generates a vector of arbitrary
dimension. The embedding produced by the encoder is the summation of the pro-
jections of each feature. Next, the Processor network receives the encoder output
to generate features related to the graph information. The output of the Processor
is then passed to a Decoder network, commonly implemented as a linear layer,
which projects the Processor features back into the original feature space. Like
the Encoder, the Decoder must also be feature-specific, as each feature belongs
to a different type, as defined in Section 3.2.1, and requires distinct reprojection to
ensure sound predictions.

31

Figure 3.3: Framework for Neural algorithmic execution within the
CLRS30 benchmark[2]. f , P and g denote the Encoder, Processor and Decoder
network, respectively. {Li}Ti=1 denote the loss function value for each step and Lout

denote the output loss. x denotes the datapoint and its different features are indi-
cated with subscripts. Information from the dataset is represented by the colored
boxes in the diagram, and information generated by the network is represented by
black boxes.

Inference Example

For illustration matters, we will present a worked example of an inference following
the Neural Algorithmic Reasoning framework, presented in Figure 3.3. The infer-
ence example will work on the prediction of the datapoint for Breadth-first search
presented in Section 3.2.3.

In this example, we will predict the next step hints and outputs for timestep
t = 2. Two key points should be emphasized:

• A single timestep prediction is not sufficient for the entire datapoint prediction.
To effectively generate outputs, the same process must be repeated over an
arbitrary number of timesteps, ideally predicting all hints.

• We assume the prediction starts at timestep t = 1. At timestep t = 0, no hints
are available, and the input to the Processor network consists solely of the
projection of the inputs.

Encoder : For simplicity, the prediction will focus solely on node features, though the
framework also supports the encoding of edge and graph features.

At timestep t = 1, the input for the Encoder network consists of the input

32

features, in the case of the BFS worked example, we have as inputs over nodes:

s =
[
0 1 0 0 0

]T
The linear projection Ws ∈ R1×n, applied to the inputs, generates the encoded
features Hs ∈ R5×n, where 5 is the number of nodes in the graph and n is the
arbitrary embedding dimension.

Assuming the prediction of hints from timestep 0 to 1 was able to predict the
ground-truth hints. The same process happens for the first rows of reach and
πh. The features reach1 and π1

h undergo the same linear projection as s

reach1 =
[
0 1 0 0 0

]T
π1
h =

[
0 1 2 3 4

]T

This process generates encoded features Hreach ∈ R5×n and Hπh
∈ R5×n. The

output for the encoder H ∈ R5×n, at timestep t = 1 is then:

H = Hs +Hreach +Hπh

Processor : The Processor network receives the calculated embeddings H, generated
by the Encoder network, alongside the provided adjacency matrix A. The
generated the processed features p ∈ R5×n are

p = P (H,A)

For simplicity and better understanding, we are assuming the processor only
receives the current embeddings generated by the Encoder and the adjacency
matrix A. However, it can receive a wider range of inputs, such as last step
embeddings, as presented in Equation 3.1.

Decoder : For prediction of outputs and next step hints the processed feature p go
through additional processing. In this example, The outputs are of type
pointer, therefore, to predict π, the linear layer Gπ ∈ Rn×5 needs to project
the arbitrary embedding dimension n into the number of nodes (5):

gπ = Gπp

The generated gπ ∈ R5×5, can be interpreted as a vector of logits for each node.
The values of gπ can then be further processed by a softmax function, so that

33

the output x̂output becomes a distribution over the nodes. The prediction selects
the node with the highest probability.

The same process is applied to the feature πs, generating the next step hints
x̂πs,2 at t = 2, which will be fed back to the network for next step prediction.

The feature reach requires special attention, as it is of type mask over nodes,
the prediction assigns each node one of two labels. The Decoder linear layer
for this task has dimensions Greach ∈ R5×1 and the applied function for gener-
ation of reach2 is the sigmoid function.

34

Chapter 4

SpectralMPNN

This chapter introduces SpectralMPNN, a novel architecture designed for neural
algorithmic reasoning. It combines the structural encoding capabilities of spectral
graph architectures with key inductive biases from the message passing framework
[1, 32], aiming to combine the strengths of both approaches.

The chapter is organized into two sections. The first motivates the use of spec-
tral architectures for neural algorithmic reasoning, highlighting their potential ad-
vantages and identifying core aspects of message passing that we seek to integrate
into spectral models. The second section presents two specific architectures, Spec-
tralMPNN and PolySpectralMPNN, which define their spectral filters as functions of
the output of message passing, therefore unifying the advantages of both approaches.

4.1 On the defense of Spectral architectures for al-

gorithmic execution

Spatial GNNs are often the preferred choice for algorithmic execution [1, 112], this is
attributed to the generality of graphs and their capacity to represent different data
structures algorithms run over, and also theoretical works that present similarities
between the message passing scheme and algorithm implementation techniques [1,
32].

As mentioned in Section 2.1.1, MPNNs excel at encoding local information;
however, they often fail to capture global graph structure [36, 120]. The over-
smoothing and over-squashing phenomenon are related to this characteristic. As
over-smoothing limits the number of layers in MPNNs, it prevents the network from
being capable of differentiating nodes within larger structures or encoding their
structural role [121]. Still, even in sufficiently expressive GNNs less prone to over-
smoothing, the compression of information over many hops places a burden on the
network’s capacity to attend to the graph’s global properties [122].

35

Figure 4.1: Distribution of Homophily for the Articulation Points classes in different
graph sizes.

It should be intuitive, that while using a graph to represent a data structure,
both the graph’s topology and the information propagated through multiple hops
are crucial for algorithmic execution. One of the strategies employed in [2] to en-
hance algorithmic performance involves disregarding the original graph structure
and instead running MPNNs on a fully connected graph. We believe the improved
performance observed with such an architecture in certain algorithms stems from
the increased reliance of these algorithms on global information.

Moreover, one of the assumptions spatial GNNs rely on for their success, is that
signals over a graph consist of low-frequency components plus high-frequency noise,
and the low-frequency components carry sufficient information for the task at hand
[35]. This assumption does not hold for algorithmic reasoning or the CLRS bench-
mark [2], as practitioners have complete control over the data-generating process,
the input features are not subject to any kind of noise.

CLRS30 Homophily

The ovesmoothing and low-pass filter properties of Spatial GNNs make their per-
formance be heavily reliant on the graph’s homophily. Homophily is a fundamental
property in many real-world datasets: it assumes that connected nodes often belong
to the same class or present similar features [60].

The inductive homophily bias of spatial GNNs can place a burden on their per-
formance under heterophilic scenarios (i.e. settings where connected nodes present
dissimilar classes). Recent lines of research show how graph-agnostic models, such as
an ordinary MLP, can outperform MPNNs in several heterophilic scenarios [61–64].

Algorithmic outputs and hints are not necessarily homophilic. For instance, Tar-
jan’s algorithm for detecting articulation points [123], implemented in the CLRS30
dataset, identifies nodes whose removal increases the number of connected compo-
nents in a graph. From a machine learning perspective, this task can be viewed as
a binary classification problem, where class 0 indicates a non-articulation point and
class 1 indicates an articulation point.

By calculating the unbiased homophily [3] (described in Appendix E), for graphs
with articulation points with different number of nodes, when can see that the

36

mode of the distribution is in the minimum value attained by the measure, thus
most graphs do not have edges between articulation points, and such labels can be
rendered as heterophilic.

Appendix F presents the same plot of distributions for algorithms Task Schedul-
ing, Activity Selector, Jarvis March and Graham Scan, which have outputs as mask
type, as described in Section 3.2.1. We can see that for such algorithms the proba-
bility density function is not as concentrated in the mode of −1, however for most
graph sizes the mode for unbiased homophily is still the minimum value (−1).

4.1.1 The Message Passing inductive bias

As previously mentioned, graph neural architectures are the commonly chosen model
for neural algorithmic execution. This is in part due to the structural generality
of graphs and their capability of representing different kinds of data structures.
However, this is not the only reason as to why these architectures are the usual
choice.

Recent theoretical works [1, 32] have drawn on the similarities between the mes-
sage passing scheme (Equation 2.1) and the execution of algorithms based on Dy-
namic Programming [124]. More specifically, the work of [32] shows that the message
passing in GNNs and the update rule in the Bellman-Ford algorithm share a common
structure, called the integral transform.

The connection between Dynamic Programming (DP) and message passing Neu-
ral Networks (MPNNs) becomes clearer when we view DP as a process of recursively
solving subproblems and aggregating their solutions to construct the final result for
the original problem instance. In this perspective, each subproblem can be repre-
sented as a node in an arbitrary graph, and the DP update rule closely mirrors the
message passing scheme described in Equation 2.1.

A striking example of this similarity is the Bellman-Ford algorithm, a well-known
method for computing single-source shortest paths. Its update rule is given by:

dvi ← min

(
dvi , min

vu∈N (vi)
dvu + w(vu,vi)

)
where dvi represents the shortest known distance from the source to node vi, and
w(vu,vi) is the weight of the edge connecting node vu to vi.

This update rule strongly resembles the message passing framework, where infor-
mation from neighboring nodes is aggregated to update each node’s state. Specifi-
cally, the Bellman-Ford algorithm propagates distance information across the graph
in an iterative manner, akin to how MPNNs update node embeddings based on local
neighborhood features.

37

One major drawback of applying spectral GNNs to algorithmic reasoning is the
loss of the inductive bias inherent in the message passing scheme. Our approach to
addressing this challenge is to design spectral GNNs that retain the inductive bias
of traditional MPNNs while still functioning as general frequency filters.

Building on this idea, we propose the SpectralMPNN, a spectral architecture
that directly filters graph signals in the frequency domain while using the message
passing update to design arbitrary filters.

4.2 Spectral MPNN

In this section we introduce the Spectral MPNN, an spectral GNN tailored for algo-
rithmic reasoning, where filters are adaptively constructed from the message passing
scheme. While there exist previous works who have combined spectral and spatial
architectures [125], for general learning in graph data, they typically merge their
outputs either by summation or stacking their layers in a network. The main dis-
tinction is that in our approach the message passing layer is directly designing the
filter being applied in the spectral component.

The underlying idea of the Spectral MPNN is to construct spectral domain filters
that are adapted to local information gathered during the message passing phase.
In a more general framework, the filters being applied in the spectral domain, are
functions of the embeddings generated during message passing.

H t
MPNN ← MPNN(H t−1

node, H
t−1
edge, A)

H t
node ← Ugθ(Λ, H

t
MPNN)U

Tx
(4.1)

Here, the learnable spectral filter gθ, parameterized by θ, is conditioned on both
the eigenvalues Λ of the graph Laplacian and the output H t

MPNN from the message
passing layer. In the next subsection, we introduce a specific architecture for gθ.
However, we argue that any design following the general formulation of Equation
4.1 should be capable of preserving the inductive bias inherent to MPNNs [1, 32].

4.2.1 Update function

The update function, generally described , takes as input node embeddings H t
node ∈

Rn,d, edge embeddings H t
edge ∈ Rn,n,d and adjacency matrix A ∈ {0, 1}n,n, and

proceeds in the following way:

H t
MPNN ← MPNN(H t−1

node, H
t−1
edge, A)

U,Λ← LaplacianEVD(A)

38

where LaplacianEVD(−) of A is the eigenvalue decomposition of the Laplacian ma-
trix of the graph defined by A, and MPNN(−,−,−) is the traditional MPNN, as
described in Equation 2.1, with

⊕
= max, Φ = ∅ and Ψ =

∑
.

The MPNN output H t+1
MPNN ∈ Rn,d is then projected onto a lower dimension dlower

by matrix W ∈ Rd,dlower , where dlower defines the number of applied filters

H t
filter ← W ×H t

MPNN (4.2)

where × denotes matrix multiplication.
From the matrix H t+1

filter, the process proceeds in the same manner as defined by
the Specformer architecture [126]. Constructing dlower different signal filters, Let
λi ∈ Rdlower be the i-th column of H t+1

filter = [λ1||λ2||...||λdlower].

Si ← Udiag(λi)U
T Ŝ ← FFN([I||S1||...||Sdlower])

Each of the Si’s is coined by [126] as the different learnable bases. They can be
seen as a distinct filters being applied to the graph signal. The concatenation of the
dlower different bases lead to Ŝ ∈ Rn,n,dlower+1, and a Feed-Forward Neural Network
FFN : Rdlower → Rd is used for additional processing.

Following the Graph Convolution as implemented by [126], the learned bases are
of the same dimension as the original signal and each feature receives application of
a distinct filter Ŝ:,:,i.

H t
:,i ← Ŝ:,:,i ×H t−1

:,i

where H t
:,i is the i-th feature of the node embeddings H t

node.
By directly decomposing the graph Laplacian L, the SpectralMPNN efficiently

encodes global information within the graph, whereas MPNNs are limited to encod-
ing localized information. Furthermore, by designing the filter based on message
passing information, the network preserves the fundamental inductive bias essential
for Neural Algorithmic Reasoning (Section 4.1.1).

Permutation Equivariance

As as an architecture over graphs, it is extremely desirable that the Spectral MPNN
possess the property of being permutation equivariant over the set of nodes [50]
(Section 2.3). We see in the following theorem that such a property is preserved in
the proposed architecture.

Theorem 4.1 (Permutation Equivariance of SpectralMPNN) The update

39

function applied by the SpectralMPNN update function is permutation equivariant
over the set of nodes.

Step 1 It should be rather clear that the validity of this theorem relies on the MPNN
layer being a permutation equivariant function, which is a property possessed
by every architecture following the design space of Equation 2.1 [49].

Therefore, for the Permutation Equivariance of the SpectralMPNN to be
validy, it must hold the MPNN layer, that1:

PH t
MPNN = MPNN(PH t−1

node, PAP T)

where P is any permutation matrix (matrix with exactly one entry 1 in each
row and each column). Throughout the remainder of this proof, we demon-
strate that applying P to node embeddings H t−1

node and adjacency matrix A is
preserved by the SpectralMPNN update function.

Step 2 The construction of H t+1
filter applies a linear transformation separately for each

of the node embeddings
H t+1

filter = WH t
MPNN

Since the linear transformation is applied exclusively on the last dimension of
H t

MPNN, we have that
PH t+1

filter = W (PH t
MPNN)

And so the generation of H t+1
filter is permutation-equivariant.

Step 3 Since the generation of H t+1
filter is permutation-equivariant, its column vectors

{λi}dlower
i=1 must also be permutation-equivariant:

PH t+1
filter = [Pλ1||Pλ2||...||Pλdlower]

Each matrix Si is constructed by turning each of the λi vectors into its diagonal
matrix diag(λi). Applying P to λi, we obtain

diag(Pλi) = Pdiag(λi)P
T

Additionaly, the Laplacian matrix L transforms as PLP T , since it is computed
from the permuted adjacency matrix PAP T . The eigenvalue decomposition
of the Laplacian then satisfies:

PUP T , PΣP T = LaplacianEVD(PAP T)

1We omit edge embeddings from the MPNN function, however the definition is similar.

40

where U is the eigenvector matrix of L.

Using this, we compute each of th Si’s

PUP Tdiag(Pλi)(PUP T)T = PUP TPdiag(λi)P
T (PUP T)T

= PUdiag(λi)UP T

= PSiP
T

Thus, the filters Si retain their permutation-equivariance.

Step 4 The filters {Si}dlower
i=1 are concatenated and processed through an FFN to form

Ŝ:
Ŝ = FFN([I||PS1P

T ||...||PSdlowerP
T])

Since the FFN operates independently on each feature dimension and does
not alter the first two dimensions, the 2-d matrices from indexing the last
dimension of Ŝ, remain permuted PŜ:,:,iP

T .

Step 5 Finally, the update function applies a distinct filter Ŝ:,:,i to each feature of the
node embeddings:

PŜ:,:,iP
TPH t−1

:,i = PŜ:,:,iH
t−1
:,i

= PH t
:,i

Thus, the generated embeddings PH t
:,i are permuted in the same way as the

original embeddings PH t−1
:,i and the adjacency matrix PAP T .

However, the enhanced expressive power comes at a computational cost. Since
the SpectralMPNN relies on the eigendecomposition of an n×n matrix, its running
time is governed by O(n3) complexity, placing a burden in scaling to larger prob-
lem instances. To address this limitation, we introduce an alternative model, the
Polynomial SpectralMPNN, described in the following section.

4.2.2 PolySpectralMPNN

Due to the computational constraints of the Laplacian matrix eigendecomposition,
the Spectral MPNN does not scale efficiently.

To overcome this issue, we propose a distinct architecture, which relies on the
polynomial graph filters, described in Section 2.2.2. The Polynomial SpectralMPNN
(PolySpectralMPNN) is restricted exclusively to polynomial filters of the Laplacian
eigenvalues and is also guided by a message passing layer.

41

More specifically, we implement a ChebNet [73] with the weights θli,j,k in Equation
2.9 calculated from the message passing layer.

H t
MPNN ← MPNN(H t−1

node, H
t−1
edge, A)

θti,j,k ←
dt−1∑
l=1

ωi,l,kH
t
j,l

where ωi,l,k are the learnable parameters and H t
j,l is the entry at the j-th row and

l-th column of H t
MPNN.

The updated embeddings H t
node follow the usual ChebNet [73] update equation

(Equations 2.8 and 2.9).
Instead of learning the coefficients for the Chebyshev terms θti,j,k directly via

gradient descent, we define them as a function of the message passing layer. This
introduces an additional inductive bias, which is particularly beneficial for algorith-
mic reasoning.

While the Polynomial SpectralMPNN significantly improves scalability for larger
graphs, this comes at the cost of reduced performance and expressiveness, as the
filter is constrained to polynomial functions of the graph frequencies.

42

Chapter 5

Experiments and Results

This chapter evaluates the performance of our proposed model, SpectralMPNN
(Chapter 4), and its ability to achieve fair results under different algorithms over
the CLRS-30 benchmark [2].

This section aims to answer the following research questions:

1. Can spectral architectures match or outperform spatial models in algorithmic
reasoning tasks?

2. How do the learned embeddings of each model decompose into the Fourier
basis? Do spectral architectures preserve smoothness in their learned repre-
sentations?

3. Does incorporating a message passing step in spectral architectures enhance
their performance?

We believe all three research questions are of fundamental importance toward
wide application of spectral architectures to algorithmic reasoning. While research
question 1 aims to evaluate the performance of the proposed model when faced
against state-of-the-art ones.

Research questions 2 and 3 investigate the theoretical properties of Spec-
tralMPNN and PolySpectralMPNN architectures when applied to Neural Algorith-
mic Reasoning.

Analyzing the smoothness of learned representations within the graph allows us
to assess the role of high-frequency components in algorithmic execution. Spatial
GNNs inherently produce smooth embeddings due to their low-pass filtering nature
[35]. In contrast, Spectral GNNs can retain high-frequency signals, and their perfor-
mance gains suggest that this ability is crucial for capturing the intricate structures
required in algorithmic tasks. Thus, improvements in spectral models may stem
from their capacity to preserve these high-frequency components.

43

Moreover, previous research [32, 112] has demonstrated that the inductive bias
of message passing networks can facilitate algorithmic reasoning. However, the
necessity of this additional step in spectral models remains unexplored. To address
this, we conduct an ablation study by re-implementing the proposed SpectralMPNNs
(Section 4.2) without the message passing step, evaluating any potential decrease in
performance.

The implemented code uses the PyTorch and PyTorch Lightning frameworks for
neural network implementation and training [127]. The entire code is open source
and is available in the github repository https://github.com/ronaldalbrt/algo_

reasoning.

5.1 Experimental details

All of the experiments were performed with an NVIDIA GeForce RTX 3090, which
provides 24GB of GPU memory.

5.1.1 Hyperparameters for training.

The embedding dimension used d = 128 across all experiments. We train with a
batch size of 32, except for algorithms Floyd-Warshall, Matrix chain multiplication
and Optimal binary search tree where memory constraints restricted us to using a
batch size of 16, using the AdamW optimizer [128] with learning rate 10−3, β1 = 0.9,
β2 = 0.999, ϵ = 10−8 and weight decay of 10−2 (default input parameters defined
by PyTorch’s AdamW optimizer). For learning stability, we also used gradient clip-
ping by norm [129] with the gradient clipping threshold set as 1, as well as Layer
Normalization [130] at the end of every Processor P .

Each model was trained for a total of a 100 epochs, and the best performing
model on the validation set over all epochs is the one selected.

5.1.2 Dataset generation

The dataset is generated in a online manner, with algorithms being executed on
random inputs during batch construction. We follow the same dataset generation
pipeline as described in [115].

Given a problem size n at random, generate an input represented as a graph with
n nodes, with node, edge and graph features matching the algorithm’s specification.

• For graph algorithms (Section 3.2), inputs graphs of size n are gener-
ated with connection probability p being sampled randomly from the list
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]. The connection probability samples a

44

https://github.com/ronaldalbrt/algo_reasoning
https://github.com/ronaldalbrt/algo_reasoning

random variable ev,u ∼ Bernoulli(p) for every pair of node (v, u) defin-
ing whether the edge exists. This is the widely known Erdos-Rényi model,
ER(n, p) [131].

• For string algorithms (Section 3.2), the problem size n is fixed at 20 and we
vary the size of the pattern 1 ≤ m ≤ n

2
to be searched. In such algorithms the

first n − m nodes represent the string and the remaining m nodes represent
the pattern to be matched over the input string.

• For sorting, searching and divide-and-conquer algorithms, the problem size n

simply defines the size of the array to be sorted.

• For geometry algorithms, n defines the number of points in convex hull finding
algorithms (Graham scan and Jarvis march) and for Segments intersect n is
fixed at 4 defining the start and end coordinates of both segments.

• For greedy algorithms, n defines the number of activities and tasks in Activity
selection and Task Scheduling, respectively.

The algorithm is then executed in the given inputs, generating intermediate hints
and outputs.

To induce diversity in the training data, the training input size ntrain of a batch
is randomly sampled from the list [4, 7, 11, 13, 16], while the validation input size is
fixed nvalidation = 16 and the test input size is larger ntest = 64, to account for the
OOD generalization (Section 3.2.2).

5.1.3 Methodology for model comparison

In order to compare model performance across all algorithm in the CLRS30 dataset,
each model was trained 5 times, yielding 5 individual scores. For each run, we
computed micro-F1 (or accuracy) [132] over the output features (Section 3.2.1).

We follow the methodology described in [2], deriving the same win/tie/loss em-
ployed in their experiment.

• Let µ(M) and σ(M) denote mean and standard deviation, respectively, ofM
model’s micro-F1 scores for a given algorithm.

• It is the case that model M1 outperforms model M2, if µ(M1) − σ(M1) ≥
µ(M2)

• The model wins on a given algorithm, if it outperforms every other tested
model on such algorithm.

45

Table 5.1: Averaged accuracy results for each of the tested models. Here results are
averaged over groups of algorithms as in [2]. Number of algorithms per group are
expressed next to the group’s name.

Algorithm MPNN [31] GAT [134] SpectralMPNN PolySpectralMPNN

Divide & Conquer (1) 15.00%± 6.8 10.31%± 3.9 23.12%± 4.5 25.93%± 7.9
Dyn. Programming (3) 12.18%± 4.2 17.88%± 6.9 11.61%± 5.6 12.13%± 5.9

Geometry (3) 86.57%± 11.20 55.48%± 12.90 91.89%± 5.8 96.48%± 7.0
Graphs (12) 74.48%± 4.6 55.45%± 6.8 70.83%± 4.2 68.39%± 6.7
Greedy (2) 85.34%± 2.5 73.30%± 3.9 86.89%± 5.0 85.48%± 1.2
Search (3) 41.45%± 4.0 30.83%± 3.7 45.82%± 3.3 42.91%± 4.3
Sorting (4) 16.75%± 9.5 15.43%± 6.1 39.87%± 14.3 30.40%± 17.2
Strings (2) 28.12%± 13.8 4.6%± 3.6 36.06%± 14.2 25.00%± 11.3

Avg. Accuracy 44.99% 32.92% 50.76% 47.91%
Avg. STD 7.2% 6% 7.1% 7.0%

Win/Tie/Loss counts. 4/12/14 0/4/26 4/18/8 2/14/14

• The model loses on a given algorithm, if it is outperformed by any other tested
model on such algorithm.

• Otherwise, the model is ties on a given algorithm.

As there exist 30 distinct algorithms in the CLRS30 dataset, the number of wins,
losses and ties for each model must sum to 30.

Additionally, we employ the one-sided non-parametric test Mann-Whitney U
[133], for testing whether one of two random variables stochastically dominates the
other (For a definition of Stochastic Dominance, see Appendix G).

As baselines, we employ the traditional MPNN [31] and Graph Attention Net-
work (GAT) [134], both models have been tested in Neural Algorithmic Reasoning
in [2] and are employed against the proposed models SpectralMPNN and PolySpec-
tralMPNN

5.2 Results

Table 5.1 presents the results grouped by algorithm types, following the CLRS30
[2] taxonomy, while Table 5.3 focus on per-algorithm results. The proposed Spec-
tralMPNN model significantly outperformed the other three tested models. Ad-
ditionally, despite its inherent expressiveness limitations, the Polynomial Spec-
tralMPNN remained highly competitive against the baselines, exhibiting only a
slight decrease in performance. The Graph Attention Network (GAT) achieved
the lowest standard deviation across runs, although its overall accuracy remained
consistently lower.

46

Table 5.2: Pairwise performance comparisons among models using the Mann-
Whitney U test. For each comparison, the number of times each model outper-
formed the other and the number of ties are reported. Bold numbers indicate the
model that performed better more frequently.

Test MPNN GAT SpectralMPNN PolySpectralMPNN Ties

MPNN vs GAT 16 2 n/a n/a 12
MPNN vs SpectralMPNN 4 n/a 7 n/a 19

MPNN vs PolySpectralMPNN 5 n/a n/a 5 20
GAT vs SpectralMPNN n/a 2 22 n/a 6

GAT vs PolySpectralMPNN n/a 1 n/a 19 10
SpectralMPNN vs PolySpectralMPNN n/a n/a 7 3 20

The most significant improvements from applying spectral architectures were
observed in Sorting and String algorithms. The performance boost in Sorting algo-
rithms can be attributed to the nature of their output: these algorithms produce
pointers that classify nodes by indicating their predecessors in the array. Predicting
node permutations in this form is inherently heterophilic, as each node must corre-
spond to a distinct node. Consequently, the ground-truth prediction for every node
in the graph is unique.

Although SpectralMPNN excels in several domains, the traditional message pass-
ing approaches (MPNN and GAT) outperform both spectral models in the Graphs
and Dynamic Programming categories. While all models exhibit similar performance
in Dynamic Programming, the baseline MPNN significantly surpasses the proposed
architectures on graph-based algorithms. We attribute this difference primarily to
the Topological Sort algorithm (see Table 5.3), where the traditional MPNN consis-
tently delivers superior results.

Table 5.2 presents the Mann-Whitney U test [133] results, showing the number
of algorithms for which one model’s performance was statistically superior to the
other’s. For instance, in the MPNN vs. SpectralMPNN comparison, SpectralMPNN
was significantly better on seven algorithms, while MPNN outperformed on four,
with twenty ties. Similarly, in the MPNN vs. Polynomial SpectralMPNN compari-
son, both models were superior on five algorithms each (with twenty ties). Finally,
SpectralMPNN outperformed Polynomial SpectralMPNN on seven algorithms com-
pared to three, with twenty ties. GAT was extensively outperformed by all other
tested models regarding the statistical test.

To further investigate whether the improved performance of SpectralMPNN
stems from its ability to adaptively filter signals, we analyze the spectral decom-
position of the learned network embeddings. Specifically, we evaluate whether the
embeddings learned by spectral architectures are less driven toward smooth features
compared to the baseline.

47

Table 5.3: Accuracy results for each of the tested models on all 30 algorithms.

Algorithm MPNN [31] GAT [134] SpectralMPNN PolySpectralMPNN

Activity Selector 89.58%± 4.6 63.58%± 7.2 84.44%± 6.9 87.85%± 1.9

Articulation Points 61.39%± 3.0 47.50%± 15.77 80.85± 1.6 90.95%± 6.0

Bellman Ford 98.02%± 0.4 82.01%± 1.3 96.80%± 0.7 95.05%± 0.8

BFS 99.37%± 0.4 99.61%± 0.6 99.70%± 0.3 93.88%± 9.0

Binary Search 27.50%± 11.4 1.8%± 2.5 25.63%± 7.5 30.63%± 11.4

Bridges 79.94%± 16.0 35.41%± 20.90 83.02%± 7.5 58.27%± 26.4

Bubble Sort 22.92%± 13.0 20.06%± 9.38 46.46%± 9.0 35.14%± 16.2

DAG Shortest Path 98.95%± 0.4 93.72%± 3.03 85.87%± 7.1 97.71%± 1.5

DFS 19.50%± 10.2 15.79%± 2.45 18.07%± 6.4 18.80%± 10.4

Dijkstra 98.02%± 0.5 75.18%± 2.59 97.61%± 0.5 96.62%± 0.7

Maximum Subarray 15.00%± 6.8 10.31%± 3.9 23.13%± 4.6 25.94%± 7.9

Floyd Warshall 11.40%± 2.4 6.97%± 1.8 10.83%± 1.6 12.84%± 3.1

Graham Scan 97.51%± 0.7 89.38%± 4.06 95.38%± 2.1 93.56%± 5.8

Heapsort 21.63%± 13.9 13.60%± 5.02 70.87%± 23.1 22.43%± 23.3

Insertion Sort 6.73%± 1.5 18.30%± 5.95 21.71%± 8.0 22.87%± 15.6

Jarvis March 64.33%± 31.03 50.54%± 20.87 82.49%± 13.51 86.54%± 2.4

KMP Matcher 23.13%± 17.5 5.62%± 4.14 35.25%± 17.8 28.13%± 15.6

LCS Length 28.51%± 10.0 45.68%± 18.61 26.24%± 14.3 28.98%± 16.5

Matrix Chain Order 4.50%± 0.5 4.92%± 0.04 5.09%± 0.3 4.74%± 0.2

Minimum 96.88%± 2.8 89.38%± 6.0 98.75%± 1.5 96.25%± 3.1

MST Kruskal 83.26%± 2.6 77.69%± 7.0 85.54%± 1.4 88.86%± 2.2

MST Prim 90.55%± 1.7 52.51%± 7.0 89.80%± 2.1 85.76%± 4.2

Naive String Matcher 33.13%± 10.2 3.75%± 3.0 36.88%± 10.7 21.88%± 7.1

Optimal BST 3.55%± 2.2 3.03± 1.8 3.53%± 2.5 2.69%± 1.2

Quickselect 0.00%± 0.0 1.25± 2.5 13.09%± 1.1 0.00%± 0.0

Quicksort 15.74%± 9.8 9.78± 4.25 20.46%± 17.3 32.11%± 19.0

Segments Intersect 97.86%± 1.9 86.64± 5.68 97.80%± 2.0 96.22%± 1.3

SCC 46.92%± 11.49 26.51± 14.01 56.94%± 6.5 32.60%± 6.2

Task Scheduling 81.11%± 0.4 82.97± 0.6 89.35%± 3.1 83.11%± 0.5

Topological Sort 99.11%± 0.5 30.61± 1.0 47.64%± 14.3 69.08%± 13.8

Avg. Accuracy 54.93% 41.47% 58.05% 55.43%

Avg. STD 6.3 6.4 6.6 7.1

48

Figure 5.1: Fourier decomposition of learned representations of five algorithms

5.2.1 Analysis of the Fourier Features

To understand the representational differences between spectral and message pass-
ing architectures, we analyzed the Fourier decomposition of their learned represen-
tations. Figure 5.1 visualizes the average Fourier features, computed across batches,
execution steps, and embedding dimensions, for five algorithms where spectral ar-
chitectures demonstrated notable performance improvements (Table 5.3).

The Fourier features are presented as a bar graph, ordered by eigenvalue, with
the left-most features associated to the lowest eigenvalue and the right-most features
associated to the highest eigenvalue.

From Figure 5.1, we observe that spectral architectures exhibit a reduced ten-
dency to be driven toward non-smooth features. In contrast, representations learned
by message passing models are strongly aligned with the eigenvector of the Laplacian
matrix corresponding to the zero eigenvalue, which represents the smoothest feature
over the graph. However, representations learned by spectral architectures are not
necessarily as smooth, often showing high similarity with eigenvectors associated
with larger eigenvalues, capturing higher-frequency components.

5.2.2 Ablation Study - Message Passing Layer

In addition, we conducted ablation studies on each algorithm to analyze the impact
of the message passing layer in the architecture. To implement SpectralMPNN
without message passing while keeping all other components unchanged, we modify
the computation of the filter matrix H t+1

filter (Equation 4.2) as follows:

H t
filter ← W ×Ht−1

node

This differs from the original formulation in Section 4.2.1, where the equation
used the output of the message passing layer H t

MPNN, instead of the input node
embeddings, H t−1

node.

49

Table 5.4: Averaged accuracy results for each of the tested models. Here results are
averaged over groups of algorithms as in [2], for per-algorithm results, see Table 5.5.
Number of algorithms per group are expressed next to the group’s name.

Algorithm SpectralMPNN w/o MP SpectralMPNN

Divide & Conquer (1) 11.87%± 5.7 23.12%± 4.5
Dyn. Programming (3) 24.21%± 12.77 11.61%± 5.6

Geometry (3) 68.68%± 16.58 91.89%± 5.8
Graphs (12) 54.11%± 7.0 70.83%± 4.2
Greedy (2) 68.00%± 3.7 86.89%± 5.0
Search (3) 28.54%± 3.1 45.82%± 3.3
Sorting (4) 36.36%± 14.17 39.87%± 14.3
Strings (2) 1.5%± 1.7 36.06%± 14.2

Avg. Accuracy 36.67% 50.76%
Avg. STD 8.1% 7.1%

Results grouped by algorithm type, following the CLRS30 taxonomy, are pre-
sented in Table 5.4, while per-algorithm results can be found in Table 5.5.

The results from the implementation without message passing are consistently
outperformed by those of the traditional architecture described in Section 4.2.1.
This reinforces the previous conclusion that message passing is a crucial component
of algorithmic execution.

Interestingly, the only algorithm group that showed improvement after removing
the message passing layer was Dynamic Programming, contradicting previous find-
ings that highlight the similarity between MP layers and DP update rules [1, 32]. In
particular, the architecture without message passing achieved notable gains on the
Optimal BST and LCS Length algorithms (Table 5.5), both of which belong to the
Dynamic Programming category.

Nonetheless, dynamic programming appears as a key component in various algo-
rithms across the CLRS30 dataset, even in those not classified under the Dynamic
Programming group. The consistently superior performance of SpectralMPNN with
message passing further reinforces previous findings, highlighting how the layer’s
local embedding mechanism provides a crucial inductive bias for algorithmic reason-
ing.

50

Table 5.5: Accuracy results for the conducted Ablation study per algorithm.

Algorithm SpectralMPNN w/o MP SpectralMPNN

Activity Selector 54.82%± 6.5 84.44%± 7.0

Articulation Points 40.77%± 35.4 93.22%± 5.1

Bellman Ford 90.62%± 2.5 96.80%± 0.7

BFS 94.55%± 5.3 99.70%± 0.3

Binary Search 6.25%± 0.0 25.63%± 7.5

Bridges 37.17%± 6.7 83.02%± 7.5

Bubble Sort 28.54%± 7.8 46.46%± 9.0

DAG Shortest Path 78.36%± 5.8 85.87%± 7.1

DFS 11.33%± 4.3 18.07%± 6.4

Dijkstra 92.96%± 2.4 97.61%± 0.5

Find Maximum Subarray Kadane 11.87%± 5.7 23.13%± 4.6

Floyd Warshall 3.71%± 0.2 10.83%± 1.6

Graham Scan 79.08%± 11.7 95.38%± 2.1

Heapsort 16.31%± 10.8 70.87%± 23.1

Insertion Sort 55.61%± 24.5 21.71%± 8.0

Jarvis March 58.85%± 14.0 82.49%± 13.5

KMP Matcher 0.63%± 1.3 35.25%± 17.8

LCS Length 39.25%± 19.8 26.24%± 14.3

Matrix Chain Order 5.75%± 0.8 5.09%± 0.3

Minimum 79.38%± 9.4 98.75%± 1.5

MST Kruskal 87.71%± 1.7 85.54%± 1.4

MST Prim 81.48%± 2.0 89.80%± 2.1

Naive String Matcher 2.50%± 2.3 36.88%± 10.7

Optimal BST 27.66%± 17.7 3.53%± 2.5

Quickselect 0.00%± 0.0 13.09%± 1.1

Quicksort 45.01%± 13.6 20.46%± 17.3

Strongly Connected Components 24.30%± 6.9 56.94%± 6.5

Segments Intersect 68.13%± 24.0 97.81%± 2.1

Task Scheduling 81.19%± 1.0 89.35%± 3.1

Topological Sort 30.61%± 10.3 47.64%± 14.3

Avg. Accuracy 44.47% 58.05%

Avg. STD 8.4% 6.6%

51

Chapter 6

Conclusion

In this work, we demonstrate that the low-pass filtering nature of message passing
GNNs hinders algorithmic execution and that preserving the non-smooth compo-
nents of graph features is essential for effective algorithmic reasoning. Specifically,
we argue that the locality bias in message passing models limits their ability to
capture the full structure of the graph—information that is crucial for accurately
mimicking algorithmic steps.

To address this limitation, we propose two spectral architectures tailored for
algorithmic reasoning, integrating filters guided by a message passing operation. We
demonstrate that these architectures remain competitive with the state-of-the-art
baseline and further argue that their improved performance stems from the adaptive
filtering capability of spectral models, in contrast to the inherent low-pass filtering
of traditional MPNNs [34, 35].

While this study is still an initial exploration of Spectral GNNs for Neural Algo-
rithmic Reasoning, we believe that further investigation through the lens of Graph
Signal Processing holds significant promise. In particular, we recognize the need for
deeper theoretical work on the alignment between algorithms and graph filtering.
A substantial body of research already explores the connection between Spectral
Graph Theory and Graph Algorithms [135], and we believe that establishing a solid
theoretical foundation for Spectral GNNs in Neural Algorithmic Reasoning could
greatly benefit from this existing framework.

Additionally, scalability becomes a challenge when applying spectral architec-
tures to larger graphs, as real-world graphs are significantly larger than the 64-node
graphs used for testing. Future research should focus on developing scalable neu-
ral network approaches that can effectively capture global graph structure while
maintaining computational efficiency.

Future work could also investigate the applicability of Spectral models to
language-based tasks by leveraging CLRS30-Text [136], a benchmark that trans-
lates CLRS30 datapoints into natural language descriptions suitable for processing

52

by state-of-the-art LLMs. In particular, [137] demonstrates that combining the
outputs of a graph network trained on the original CLRS30 dataset with a large
language model can enhance performance on algorithmic reasoning tasks expressed
in natural language. The improved performance of Spectral MPNN (Chapter 4) is
expected to better guide the LLM’s outputs for algorithmic execution.

In conclusion, this dissertation underscores the advantages of efficiently encoding
global structural information, rather than relying solely on local graph features, for
algorithmic tasks. It also brings to light a key bottleneck in discrete reasoning with
neural networks: the locality bias and low-pass filtering behavior inherent in many
widely used graph models. We argue that these limitations significantly hinder their
performance on tasks requiring formal reasoning.

53

References

[1] XU, K., LI, J., ZHANG, M., et al. “What Can Neural Networks Reason About?”
2020. Disponível em: <https://arxiv.org/abs/1905.13211>.

[2] VELIČKOVIĆ, P., BADIA, A. P., BUDDEN, D., et al. “The CLRS Algorith-
mic Reasoning Benchmark”. 2022. Disponível em: <https://arxiv.org/

abs/2205.15659>.

[3] MIRONOV, M., PROKHORENKOVA, L. “Revisiting Graph Homophily Mea-
sures”. 2024. Disponível em: <https://arxiv.org/abs/2412.09663>.

[4] VELIČKOVIĆ, P., BLUNDELL, C. “Neural algorithmic reasoning”, Patterns,
v. 2, n. 7, pp. 100273, jul. 2021. ISSN: 2666-3899. doi: 10.1016/j.patter.
2021.100273. Disponível em: <http://dx.doi.org/10.1016/j.patter.

2021.100273>.

[5] CHOLLET, F. Deep Learning with Python. 1st ed. USA, Manning Publications
Co., 2017. ISBN: 1617294438.

[6] KRIZHEVSKY, A., SUTSKEVER, I., HINTON, G. E. “ImageNet Classi-
fication with Deep Convolutional Neural Networks”. In: Pereira, F.,
Burges, C., Bottou, L., et al. (Eds.), Advances in Neural Information
Processing Systems, v. 25. Curran Associates, Inc., 2012. Disponível
em: <https://proceedings.neurips.cc/paper_files/paper/2012/

file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf>.

[7] HE, K., ZHANG, X., REN, S., et al. “Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification”. In: 2015 IEEE
International Conference on Computer Vision (ICCV), pp. 1026–1034,
2015. doi: 10.1109/ICCV.2015.123.

[8] LEE, H., PHAM, P., LARGMAN, Y., et al. “Unsupervised feature learning for
audio classification using convolutional deep belief networks”. In: Ben-
gio, Y., Schuurmans, D., Lafferty, J., et al. (Eds.), Advances in Neural
Information Processing Systems, v. 22. Curran Associates, Inc., 2009.

54

https://arxiv.org/abs/1905.13211
https://arxiv.org/abs/2205.15659
https://arxiv.org/abs/2205.15659
https://arxiv.org/abs/2412.09663
http://dx.doi.org/10.1016/j.patter.2021.100273
http://dx.doi.org/10.1016/j.patter.2021.100273
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

Disponível em: <https://proceedings.neurips.cc/paper_files/

paper/2009/file/a113c1ecd3cace2237256f4c712f61b5-Paper.pdf>.

[9] VASWANI, A., SHAZEER, N., PARMAR, N., et al. “Attention Is All You Need”.
2023. Disponível em: <https://arxiv.org/abs/1706.03762>.

[10] BATRA, H., PUNN, N. S., SONBHADRA, S. K., et al. “BERT-Based Sen-
timent Analysis: A Software Engineering Perspective”. In: Database and
Expert Systems Applications, p. 138–148, Springer International Publish-
ing, 2021. ISBN: 9783030864729. doi: 10.1007/978-3-030-86472-9_13.
Disponível em: <http://dx.doi.org/10.1007/978-3-030-86472-9_

13>.

[11] OPENAI, ACHIAM, J., ADLER, S., et al. “GPT-4 Technical Report”. 2024.
Disponível em: <https://arxiv.org/abs/2303.08774>.

[12] TEAM, G., ANIL, R., BORGEAUD, S., et al. “Gemini: A Family of Highly
Capable Multimodal Models”. 2024. Disponível em: <https://arxiv.

org/abs/2312.11805>.

[13] BOMMASANI, R., HUDSON, D. A., ADELI, E., et al. “On the Opportuni-
ties and Risks of Foundation Models”. 2022. Disponível em: <https:

//arxiv.org/abs/2108.07258>.

[14] BROWN, T. B., MANN, B., RYDER, N., et al. “Language Models are Few-
Shot Learners”. 2020. Disponível em: <https://arxiv.org/abs/2005.

14165>.

[15] PLAAT, A., WONG, A., VERBERNE, S., et al. “Reasoning with Large Lan-
guage Models, a Survey”. 2024. Disponível em: <https://arxiv.org/

abs/2407.11511>.

[16] TEIG, N., SCHERER, R. “Bringing Formal and Informal Reasoning To-
gether—A New Era of Assessment?” Frontiers in Psychology, v. 7, 07
2016. doi: 10.3389/fpsyg.2016.01097.

[17] PROUDFOOT, M. The Routledge Dictionary of Philosophy. New York, NY,
Routledge, 2010.

[18] SAXTON, D., GREFENSTETTE, E., HILL, F., et al. “Analysing Math-
ematical Reasoning Abilities of Neural Models”. 2019. Disponível em:
<https://arxiv.org/abs/1904.01557>.

55

https://proceedings.neurips.cc/paper_files/paper/2009/file/a113c1ecd3cace2237256f4c712f61b5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/a113c1ecd3cace2237256f4c712f61b5-Paper.pdf
https://arxiv.org/abs/1706.03762
http://dx.doi.org/10.1007/978-3-030-86472-9_13
http://dx.doi.org/10.1007/978-3-030-86472-9_13
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2407.11511
https://arxiv.org/abs/2407.11511
https://arxiv.org/abs/1904.01557

[19] CHEN, M., TWOREK, J., JUN, H., et al. “Evaluating Large Language Mod-
els Trained on Code”. 2021. Disponível em: <https://arxiv.org/abs/

2107.03374>.

[20] CHOLLET, F. “On the Measure of Intelligence”. 2019. Disponível em: <https:

//arxiv.org/abs/1911.01547>.

[21] HUANG, L., YU, W., MA, W., et al. “A Survey on Hallucination in Large
Language Models: Principles, Taxonomy, Challenges, and Open Ques-
tions”, ACM Transactions on Information Systems, v. 43, n. 2, pp. 1–55,
jan. 2025. ISSN: 1558-2868. doi: 10.1145/3703155. Disponível em:
<http://dx.doi.org/10.1145/3703155>.

[22] KAHNEMAN, D. Thinking, Fast and Slow. New York: New York, Farrar,
Straus and Giroux, 2011.

[23] LI, Z.-Z., ZHANG, D., ZHANG, M.-L., et al. “From System 1 to System 2:
A Survey of Reasoning Large Language Models”. 2025. Disponível em:
<https://arxiv.org/abs/2502.17419>.

[24] CHOLLET, F. “It’s Not About Scale, It’s About Abstraction”, The 17th Annual
AGI Conference, 2024. Disponível em: <https://www.youtube.com/

watch?v=s7_NlkBwdj8>.

[25] LIU, J., SHEN, Z., HE, Y., et al. “Towards Out-Of-Distribution Generaliza-
tion: A Survey”. 2023. Disponível em: <https://arxiv.org/abs/2108.

13624>.

[26] VALIANT, L. “Out-of-Distribution Generalization as Reasoning: Are LLMs
Competitive?” Emerging Generalization Settings, 2024. Disponível em:
<https://www.youtube.com/watch?v=rvLUo0xiSxg>.

[27] BEURER-KELLNER, L., VECHEV, M., VANBEVER, L., et al. “Learning to
Configure Computer Networks with Neural Algorithmic Reasoning”. 2022.
Disponível em: <https://arxiv.org/abs/2211.01980>.

[28] NUMEROSO, D., BACCIU, D., VELIČKOVIĆ, P. “Dual Algorithmic Reason-
ing”. 2023. Disponível em: <https://arxiv.org/abs/2302.04496>.

[29] VELIČKOVIĆ, P., BOŠNJAK, M., KIPF, T., et al. “Reasoning-Modulated
Representations”. 2022. Disponível em: <https://arxiv.org/abs/

2107.08881>.

56

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/1911.01547
http://dx.doi.org/10.1145/3703155
https://arxiv.org/abs/2502.17419
https://www.youtube.com/watch?v=s7_NlkBwdj8
https://www.youtube.com/watch?v=s7_NlkBwdj8
https://arxiv.org/abs/2108.13624
https://arxiv.org/abs/2108.13624
https://www.youtube.com/watch?v=rvLUo0xiSxg
https://arxiv.org/abs/2211.01980
https://arxiv.org/abs/2302.04496
https://arxiv.org/abs/2107.08881
https://arxiv.org/abs/2107.08881

[30] ALQIAM, A. A., YAO, Y., WANG, Z., et al. “Transferable Neural WAN
TE for Changing Topologies”. In: Proceedings of the ACM SIGCOMM
2024 Conference, ACM SIGCOMM ’24, p. 86–102, New York, NY, USA,
2024. Association for Computing Machinery. ISBN: 9798400706141. doi:
10.1145/3651890.3672237. Disponível em: <https://doi.org/10.1145/

3651890.3672237>.

[31] GILMER, J., SCHOENHOLZ, S. S., RILEY, P. F., et al. “Neural Mes-
sage Passing for Quantum Chemistry”. 2017. Disponível em: <https:

//arxiv.org/abs/1704.01212>.

[32] DUDZIK, A., VELIČKOVIĆ, P. “Graph Neural Networks are Dynamic
Programmers”. 2022. Disponível em: <https://arxiv.org/abs/2203.

15544>.

[33] RUSCH, T. K., BRONSTEIN, M. M., MISHRA, S. “A Survey on Over-
smoothing in Graph Neural Networks”. 2023. Disponível em: <https:

//arxiv.org/abs/2303.10993>.

[34] LI, Q., HAN, Z., WU, X.-M. “Deeper Insights into Graph Convolutional Net-
works for Semi-Supervised Learning”. 2018. Disponível em: <https:

//arxiv.org/abs/1801.07606>.

[35] NT, H., MAEHARA, T. “Revisiting Graph Neural Networks: All We Have
is Low-Pass Filters”. 2019. Disponível em: <https://arxiv.org/abs/

1905.09550>.

[36] RAMPÁŠEK, L., GALKIN, M., DWIVEDI, V. P., et al. “Recipe for a General,
Powerful, Scalable Graph Transformer”. 2023. Disponível em: <https:

//arxiv.org/abs/2205.12454>.

[37] WANG, X., ZHANG, M. “How Powerful are Spectral Graph Neural Networks”.
2022. Disponível em: <https://arxiv.org/abs/2205.11172>.

[38] MCCULLOCH, W. S., PITTS, W. “A logical calculus of the ideas immanent
in nervous activity”, The bulletin of mathematical biophysics, v. 5, n. 4,
pp. 115–133, Dec 1943. ISSN: 1522-9602. doi: 10.1007/BF02478259.
Disponível em: <https://doi.org/10.1007/BF02478259>.

[39] HEBB, D. O. The Organization of Behavior: A Neuropsychological Theory.
New York, Wiley, 1949.

[40] ROSENBLATT, F. “The perceptron: a probabilistic model for information
storage and organization in the brain.” Psychological review, v. 65 6,

57

https://doi.org/10.1145/3651890.3672237
https://doi.org/10.1145/3651890.3672237
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/2203.15544
https://arxiv.org/abs/2203.15544
https://arxiv.org/abs/2303.10993
https://arxiv.org/abs/2303.10993
https://arxiv.org/abs/1801.07606
https://arxiv.org/abs/1801.07606
https://arxiv.org/abs/1905.09550
https://arxiv.org/abs/1905.09550
https://arxiv.org/abs/2205.12454
https://arxiv.org/abs/2205.12454
https://arxiv.org/abs/2205.11172
https://doi.org/10.1007/BF02478259

pp. 386–408, 1958. Disponível em: <https://api.semanticscholar.

org/CorpusID:12781225>.

[41] CYBENKO, G. “Approximation by superpositions of a sigmoidal function”,
Mathematics of Control, Signals and Systems, v. 2, n. 4, pp. 303–314,
Dec 1989. ISSN: 1435-568X. doi: 10.1007/BF02551274. Disponível em:
<https://doi.org/10.1007/BF02551274>.

[42] RUMELHART, D. E., HINTON, G. E., WILLIAMS, R. J. “Learning represen-
tations by back-propagating errors”, Nature, v. 323, n. 6088, pp. 533–536,
Oct 1986. ISSN: 1476-4687. doi: 10.1038/323533a0. Disponível em:
<https://doi.org/10.1038/323533a0>.

[43] GOYAL, A., BENGIO, Y. “Inductive biases for deep learning of higher-level
cognition”, Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, v. 478, n. 2266, pp. 20210068, 2022. doi: 10.1098/
rspa.2021.0068. Disponível em: <https://royalsocietypublishing.

org/doi/abs/10.1098/rspa.2021.0068>.

[44] LECUN, Y., BOSER, B., DENKER, J., et al. “Handwritten Digit Recognition
with a Back-Propagation Network”. In: Touretzky, D. (Ed.), Advances in
Neural Information Processing Systems, v. 2. Morgan-Kaufmann, 1989.
Disponível em: <https://proceedings.neurips.cc/paper_files/

paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf>.

[45] GRAVES, A., LIWICKI, M., FERNÁNDEZ, S., et al. “A Novel Connectionist
System for Unconstrained Handwriting Recognition”, IEEE Transactions
on Pattern Analysis and Machine Intelligence, v. 31, n. 5, pp. 855–868,
2009. doi: 10.1109/TPAMI.2008.137.

[46] HOCHREITER, S., SCHMIDHUBER, J. “Long Short-Term Memory”, Neural
Computation, v. 9, n. 8, pp. 1735–1780, 1997. doi: 10.1162/neco.1997.9.
8.1735.

[47] MA, Y., TANG, J. Deep Learning on Graphs. Cambridge, United Kingdom.,
Cambridge University Press, 2021.

[48] CVETKOVIĆ, D., DOOB, M., SACHS, H. Spectra of Graphs: The-
ory and Application. Pure and applied mathematics : a series of
monographs and textbooks. New York, Academic Press, 1980. ISBN:
9780121951504. Disponível em: <https://books.google.com.br/

books?id=4u7uAAAAMAAJ>.

58

https://api.semanticscholar.org/CorpusID:12781225
https://api.semanticscholar.org/CorpusID:12781225
https://doi.org/10.1007/BF02551274
https://doi.org/10.1038/323533a0
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2021.0068
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2021.0068
https://proceedings.neurips.cc/paper_files/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf
https://books.google.com.br/books?id=4u7uAAAAMAAJ
https://books.google.com.br/books?id=4u7uAAAAMAAJ

[49] YOU, J., YING, R., LESKOVEC, J. “Design Space for Graph Neural Net-
works”. 2021. Disponível em: <https://arxiv.org/abs/2011.08843>.

[50] BRONSTEIN, M. M., BRUNA, J., COHEN, T., et al. “Geometric Deep Learn-
ing: Grids, Groups, Graphs, Geodesics, and Gauges”. 2021. Disponível
em: <https://arxiv.org/abs/2104.13478>.

[51] XU, K., HU, W., LESKOVEC, J., et al. “How Powerful are Graph Neural Net-
works?” 2019. Disponível em: <https://arxiv.org/abs/1810.00826>.

[52] WANG, Y., SUN, Y., LIU, Z., et al. “Dynamic Graph CNN for Learning on
Point Clouds”. 2019. Disponível em: <https://arxiv.org/abs/1801.

07829>.

[53] KIPF, T. N., WELLING, M. “Semi-Supervised Classification with Graph Con-
volutional Networks”. 2017. Disponível em: <https://arxiv.org/abs/

1609.02907>.

[54] GIOVANNI, F. D., ROWBOTTOM, J., CHAMBERLAIN, B. P., et al. “Un-
derstanding convolution on graphs via energies”. 2023. Disponível em:
<https://arxiv.org/abs/2206.10991>.

[55] ZHAO, W., WANG, C., HAN, C., et al. “Comprehensive Analysis of Over-
smoothing in Graph Neural Networks from Markov Chains Perspective”.
2023. Disponível em: <https://arxiv.org/abs/2211.06605>.

[56] CAI, C., WANG, Y. “A Note on Over-Smoothing for Graph Neural Networks”.
2020. Disponível em: <https://arxiv.org/abs/2006.13318>.

[57] RUSCH, T. K., CHAMBERLAIN, B. P., ROWBOTTOM, J., et al. “Graph-
Coupled Oscillator Networks”. 2022. Disponível em: <https://arxiv.

org/abs/2202.02296>.

[58] LI, G., MÜLLER, M., THABET, A., et al. “DeepGCNs: Can GCNs Go as
Deep as CNNs?” 2019. Disponível em: <https://arxiv.org/abs/1904.

03751>.

[59] RONG, Y., HUANG, W., XU, T., et al. “DropEdge: Towards Deep Graph
Convolutional Networks on Node Classification”. 2020. Disponível em:
<https://arxiv.org/abs/1907.10903>.

[60] MCPHERSON, M., SMITH-LOVIN, L., COOK, J. M. “Birds of a Feather:
Homophily in Social Networks”, Annual Review of Sociology, v. 27,
pp. 415–444, 2001. ISSN: 03600572, 15452115. Disponível em: <http:

//www.jstor.org/stable/2678628>.

59

https://arxiv.org/abs/2011.08843
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/1810.00826
https://arxiv.org/abs/1801.07829
https://arxiv.org/abs/1801.07829
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/2206.10991
https://arxiv.org/abs/2211.06605
https://arxiv.org/abs/2006.13318
https://arxiv.org/abs/2202.02296
https://arxiv.org/abs/2202.02296
https://arxiv.org/abs/1904.03751
https://arxiv.org/abs/1904.03751
https://arxiv.org/abs/1907.10903
http://www.jstor.org/stable/2678628
http://www.jstor.org/stable/2678628

[61] ZHU, J., YAN, Y., ZHAO, L., et al. “Beyond Homophily in Graph Neural
Networks: Current Limitations and Effective Designs”. 2020. Disponível
em: <https://arxiv.org/abs/2006.11468>.

[62] LUAN, S., HUA, C., LU, Q., et al. “The Heterophilic Graph Learning Hand-
book: Benchmarks, Models, Theoretical Analysis, Applications and Chal-
lenges”. 2024. Disponível em: <https://arxiv.org/abs/2407.09618>.

[63] LUAN, S., HUA, C., LU, Q., et al. “Revisiting Heterophily For Graph Neu-
ral Networks”. 2022. Disponível em: <https://arxiv.org/abs/2210.

07606>.

[64] PLATONOV, O., KUZNEDELEV, D., DISKIN, M., et al. “A critical look at the
evaluation of GNNs under heterophily: Are we really making progress?”
2024. Disponível em: <https://arxiv.org/abs/2302.11640>.

[65] SPIELMAN, D. A. “Spectral Graph Theory and its Applications”. In: 48th An-
nual IEEE Symposium on Foundations of Computer Science (FOCS’07),
pp. 29–38, 2007. doi: 10.1109/FOCS.2007.56.

[66] GOLUB, G., VAN LOAN, C. Matrix Computations. Johns Hopkins Studies
in the Mathematical Sciences. Baltimore, Maryland, USA, Johns Hopkins
University Press, 2013. ISBN: 9781421407944.

[67] MARSDEN, A. “Eigenvalues of the Laplacian and their relationship to the con-
nectedness”, University of Chicago, REU, 2013. Disponível em: <https:

//api.semanticscholar.org/CorpusID:17239810>.

[68] SHUMAN, D. I., NARANG, S. K., FROSSARD, P., et al. “The emerging
field of signal processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains”, IEEE Signal Processing
Magazine, v. 30, n. 3, pp. 83–98, maio 2013. ISSN: 1053-5888. doi:
10.1109/msp.2012.2235192. Disponível em: <http://dx.doi.org/10.

1109/MSP.2012.2235192>.

[69] KENLAY, H., THANOU, D., DONG, X. “On The Stability of Polyno-
mial Spectral Graph Filters”, 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 5350–5354, 2020. doi:
10.1109/ICASSP40776.2020.9054072.

[70] WU, Z., PAN, S., CHEN, F., et al. “A Comprehensive Survey on Graph Neural
Networks”, IEEE Transactions on Neural Networks and Learning Systems,
v. 32, n. 1, pp. 4–24, jan. 2021. ISSN: 2162-2388. doi: 10.1109/tnnls.2020.

60

https://arxiv.org/abs/2006.11468
https://arxiv.org/abs/2407.09618
https://arxiv.org/abs/2210.07606
https://arxiv.org/abs/2210.07606
https://arxiv.org/abs/2302.11640
https://api.semanticscholar.org/CorpusID:17239810
https://api.semanticscholar.org/CorpusID:17239810
http://dx.doi.org/10.1109/MSP.2012.2235192
http://dx.doi.org/10.1109/MSP.2012.2235192

2978386. Disponível em: <http://dx.doi.org/10.1109/TNNLS.2020.

2978386>.

[71] BO, D., WANG, X., LIU, Y., et al. “A Survey on Spectral Graph Neural Net-
works”. 2023. Disponível em: <https://arxiv.org/abs/2302.05631>.

[72] BRUNA, J., ZAREMBA, W., SZLAM, A., et al. “Spectral Networks and Locally
Connected Networks on Graphs”. 2014. Disponível em: <https://arxiv.

org/abs/1312.6203>.

[73] DEFFERRARD, M., BRESSON, X., VANDERGHEYNST, P. “Convolutional
Neural Networks on Graphs with Fast Localized Spectral Filtering”. 2017.
Disponível em: <https://arxiv.org/abs/1606.09375>.

[74] SILVER, D., HUANG, A., MADDISON, C. J., et al. “Mastering the game
of Go with deep neural networks and tree search”, Nature, v. 529, n.
7587, pp. 484–489, Jan 2016. ISSN: 1476-4687. doi: 10.1038/nature16961.
Disponível em: <https://doi.org/10.1038/nature16961>.

[75] HE, K., ZHANG, X., REN, S., et al. “Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification”. 2015. Disponível
em: <https://arxiv.org/abs/1502.01852>.

[76] YE, H., XIE, C., CAI, T., et al. “Towards a Theoretical Framework of Out-
of-Distribution Generalization”. 2021. Disponível em: <https://arxiv.

org/abs/2106.04496>.

[77] PETERS, J., BÜHLMANN, P., MEINSHAUSEN, N. “Causal inference us-
ing invariant prediction: identification and confidence intervals”. 2015.
Disponível em: <https://arxiv.org/abs/1501.01332>.

[78] ARJOVSKY, M., BOTTOU, L., GULRAJANI, I., et al. “Invariant Risk
Minimization”. 2020. Disponível em: <https://arxiv.org/abs/1907.

02893>.

[79] CHANG, S., ZHANG, Y., YU, M., et al. “Invariant Rationalization”. 2020.
Disponível em: <https://arxiv.org/abs/2003.09772>.

[80] PETERS, J., BÜHLMANN, P., MEINSHAUSEN, N. “Causal inference us-
ing invariant prediction: identification and confidence intervals”. 2015.
Disponível em: <https://arxiv.org/abs/1501.01332>.

[81] PEARL, J. Causality: models, reasoning, and inference. USA, Cambridge
University Press, 2000. ISBN: 0521773628.

61

http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://dx.doi.org/10.1109/TNNLS.2020.2978386
https://arxiv.org/abs/2302.05631
https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/1606.09375
https://doi.org/10.1038/nature16961
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/2106.04496
https://arxiv.org/abs/2106.04496
https://arxiv.org/abs/1501.01332
https://arxiv.org/abs/1907.02893
https://arxiv.org/abs/1907.02893
https://arxiv.org/abs/2003.09772
https://arxiv.org/abs/1501.01332

[82] BÜHLMANN, P. “Invariance, Causality and Robustness”. 2018. Disponível em:
<https://arxiv.org/abs/1812.08233>.

[83] CORMEN, T., LEISERSON, C., RIVEST, R., et al. Introduction to Algo-
rithms, fourth edition. 4th ed. , The MIT Press. ISBN: 0262033844.

[84] CHOLLET, F. “On the Measure of Intelligence”. 2019. Disponível em: <https:

//arxiv.org/abs/1911.01547>.

[85] BOBER-IRIZAR, M., BANERJEE, S. “Neural networks for abstraction and
reasoning: Towards broad generalization in machines”. 2024. Disponível
em: <https://arxiv.org/abs/2402.03507>.

[86] MOHRI, M., ROSTAMIZADEH, A., TALWALKAR, A. Foundations of Ma-
chine Learning. The MIT Press, 2012. ISBN: 026201825X.

[87] DENG, J., DONG, W., SOCHER, R., et al. “ImageNet: A large-scale hierar-
chical image database”. In: 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 248–255, 2009. doi: 10.1109/CVPR.2009.
5206848.

[88] LIN, T.-Y., MAIRE, M., BELONGIE, S., et al. “Microsoft COCO: Common
Objects in Context”. 2015. Disponível em: <https://arxiv.org/abs/

1405.0312>.

[89] BOJAR, O., BUCK, C., FEDERMANN, C., et al. “Findings of the 2014 Work-
shop on Statistical Machine Translation”. In: Bojar, O., Buck, C., Feder-
mann, C., et al. (Eds.), Proceedings of the Ninth Workshop on Statistical
Machine Translation, pp. 12–58, Baltimore, Maryland, USA, jun. 2014.
Association for Computational Linguistics. doi: 10.3115/v1/W14-3302.
Disponível em: <https://aclanthology.org/W14-3302/>.

[90] DULAC-ARNOLD, G., LEVINE, N., MANKOWITZ, D. J., et al. “An empirical
investigation of the challenges of real-world reinforcement learning”. 2021.
Disponível em: <https://arxiv.org/abs/2003.11881>.

[91] WILLIAMS, J. W. J. “Algorithm 232: Heapsort”, Communications of the ACM,
v. 7, n. 6, pp. 347–348, 1964.

[92] HOARE, C. A. R. “Quicksort”, The Computer Journal, v. 5, n. 1, pp. 10–16,
01 1962. ISSN: 0010-4620. doi: 10.1093/comjnl/5.1.10. Disponível em:
<https://doi.org/10.1093/comjnl/5.1.10>.

62

https://arxiv.org/abs/1812.08233
https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/2402.03507
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1405.0312
https://aclanthology.org/W14-3302/
https://arxiv.org/abs/2003.11881
https://doi.org/10.1093/comjnl/5.1.10

[93] HOARE, C. A. R. “Algorithm 65: find”, Commun. ACM, v. 4, n. 7, pp. 321–322,
jul. 1961. ISSN: 0001-0782. doi: 10.1145/366622.366647. Disponível em:
<https://doi.org/10.1145/366622.366647>.

[94] BENTLEY, J. “Programming pearls: algorithm design techniques”, Commun.
ACM, v. 27, n. 9, pp. 865–873, set. 1984. ISSN: 0001-0782. doi: 10.1145/
358234.381162. Disponível em: <https://doi.org/10.1145/358234.

381162>.

[95] GAVRIL, F. “Algorithms for Minimum Coloring, Maximum Clique, Minimum
Covering by Cliques, and Maximum Independent Set of a Chordal Graph”,
SIAM Journal on Computing, v. 1, n. 2, pp. 180–187, 1972. doi: 10.1137/
0201013. Disponível em: <https://doi.org/10.1137/0201013>.

[96] LAWLER, E. L., LENSTRA, J. K., RINNOOY, A. H., et al. The traveling
salesman problem: a guided tour of combinatorial optimization. Wiley Se-
ries in Discrete Mathematics & Optimization. Chichester, England, John
Wiley & Sons, ago. 1985.

[97] AHO, A. V., HOPCROFT, J. E. The Design and Analysis of Computer Al-
gorithms. 1st ed. USA, Addison-Wesley Longman Publishing Co., Inc.,
1974. ISBN: 0201000296.

[98] WELLS, M. B. “Review: Donald E. Knuth, The Art of Computer Program-
ming, Volume 1. Fundamental Algorithms and Volume 2. Seminumerical
Algorithms”, Bulletin of the American Mathematical Society, v. 79, n. 3,
pp. 501 – 509, 1973.

[99] KRUSKAL, J. B. “On the shortest spanning subtree of a graph and the traveling
salesman problem”. In: Proceedings of the American Mathematical society,
1956. Disponível em: <https://api.semanticscholar.org/CorpusID:

120068278>.

[100] PRIM, R. C. “Shortest connection networks and some generalizations”, The
Bell System Technical Journal, v. 36, n. 6, pp. 1389–1401, 1957. doi:
10.1002/j.1538-7305.1957.tb01515.x.

[101] BELLMAN, R. “On a Routing Problem”, Quarterly of Applied Math-
ematics, v. 16, pp. 87–90, 1958. Disponível em: <https://api.

semanticscholar.org/CorpusID:123639971>.

[102] DIJKSTRA, E. W. “A note on two problems in connexion with graphs”,
Numerische Mathematik, v. 1, n. 1, pp. 269–271, Dec 1959. ISSN: 0945-

63

https://doi.org/10.1145/366622.366647
https://doi.org/10.1145/358234.381162
https://doi.org/10.1145/358234.381162
https://doi.org/10.1137/0201013
https://api.semanticscholar.org/CorpusID:120068278
https://api.semanticscholar.org/CorpusID:120068278
https://api.semanticscholar.org/CorpusID:123639971
https://api.semanticscholar.org/CorpusID:123639971

3245. doi: 10.1007/BF01386390. Disponível em: <https://doi.org/

10.1007/BF01386390>.

[103] FLOYD, R. W. “Algorithm 97: Shortest path”, Commun. ACM, v. 5, n. 6,
pp. 345, jun. 1962. ISSN: 0001-0782. doi: 10.1145/367766.368168.
Disponível em: <https://doi.org/10.1145/367766.368168>.

[104] KNUTH, D. E., MORRIS, JR., J. H., PRATT, V. R. “Fast Pattern Match-
ing in Strings”, SIAM Journal on Computing, v. 6, n. 2, pp. 323–350,
1977. doi: 10.1137/0206024. Disponível em: <https://doi.org/10.

1137/0206024>.

[105] GRAHAM, R. L. “An Efficient Algorithm for Determining the Convex Hull of a
Finite Planar Set”, Inf. Process. Lett., v. 1, pp. 132–133, 1972. Disponível
em: <https://api.semanticscholar.org/CorpusID:45778703>.

[106] JARVIS, R. “On the identification of the convex hull of a finite set of points in
the plane”, Information Processing Letters, v. 2, n. 1, pp. 18–21, 1973.
ISSN: 0020-0190. doi: https://doi.org/10.1016/0020-0190(73)90020-3.
Disponível em: <https://www.sciencedirect.com/science/article/

pii/0020019073900203>.

[107] VELIČKOVIĆ, P., YING, R., PADOVANO, M., et al. “Neural Execution of
Graph Algorithms”. 2020. Disponível em: <https://arxiv.org/abs/

1910.10593>.

[108] XU, K., ZHANG, M., LI, J., et al. “How Neural Networks Extrapolate: From
Feedforward to Graph Neural Networks”. 2021. Disponível em: <https:

//arxiv.org/abs/2009.11848>.

[109] BEVILACQUA, B., ZHOU, Y., RIBEIRO, B. “Size-Invariant Graph Repre-
sentations for Graph Classification Extrapolations”. 2021. Disponível em:
<https://arxiv.org/abs/2103.05045>.

[110] GEORGIEV, D., LIÒ, P. “Neural Bipartite Matching”. 2024. Disponível em:
<https://arxiv.org/abs/2005.11304>.

[111] DEAC, A., BACON, P.-L., TANG, J. “Graph neural induction of value itera-
tion”. 2020. Disponível em: <https://arxiv.org/abs/2009.12604>.

[112] VELIČKOVIĆ, P., BUESING, L., OVERLAN, M. C., et al. “Pointer
Graph Networks”. 2020. Disponível em: <https://arxiv.org/abs/

2006.06380>.

64

https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
https://doi.org/10.1145/367766.368168
https://doi.org/10.1137/0206024
https://doi.org/10.1137/0206024
https://api.semanticscholar.org/CorpusID:45778703
https://www.sciencedirect.com/science/article/pii/0020019073900203
https://www.sciencedirect.com/science/article/pii/0020019073900203
https://arxiv.org/abs/1910.10593
https://arxiv.org/abs/1910.10593
https://arxiv.org/abs/2009.11848
https://arxiv.org/abs/2009.11848
https://arxiv.org/abs/2103.05045
https://arxiv.org/abs/2005.11304
https://arxiv.org/abs/2009.12604
https://arxiv.org/abs/2006.06380
https://arxiv.org/abs/2006.06380

[113] F., M. E. “The shortest path through a maze”, Proc. International Symposium
on the Theory of Switching, pp. 285–292, 1959. Disponível em: <https:

//cir.nii.ac.jp/crid/1570854174823707776>.

[114] LAKE, B. M., ULLMAN, T. D., TENENBAUM, J. B., et al. “Building
Machines That Learn and Think Like People”, 2016. Disponível em:
<https://arxiv.org/abs/1604.00289>.

[115] IBARZ, B., KURIN, V., PAPAMAKARIOS, G., et al. “A Generalist Neural
Algorithmic Learner”. 2022. Disponível em: <https://arxiv.org/abs/

2209.11142>.

[116] HAMRICK, J. B., ALLEN, K. R., BAPST, V., et al. “Relational inductive
bias for physical construction in humans and machines”. 2018. Disponível
em: <https://arxiv.org/abs/1806.01203>.

[117] DEAC, A., VELIČKOVIĆ, P., MILINKOVIĆ, O., et al. “XLVIN: eXecuted
Latent Value Iteration Nets”. 2020. Disponível em: <https://arxiv.

org/abs/2010.13146>.

[118] NUMEROSO, D., BACCIU, D., VELIČKOVIĆ, P. “Dual Algorithmic Rea-
soning”. 2023. Disponível em: <https://arxiv.org/abs/2302.04496>.

[119] VELIČKOVIĆ, P., BOŠNJAK, M., KIPF, T., et al. “Reasoning-Modulated
Representations”. In: Rieck, B., Pascanu, R. (Eds.), Proceedings of the
First Learning on Graphs Conference, v. 198, Proceedings of Machine
Learning Research, pp. 50:1–50:17. PMLR, 09–12 Dec 2022. Disponível
em: <https://proceedings.mlr.press/v198/velickovic22a.html>.

[120] ALON, U., YAHAV, E. “On the Bottleneck of Graph Neural Networks and
its Practical Implications”. 2021. Disponível em: <https://arxiv.org/

abs/2006.05205>.

[121] BUFFELLI, D., VANDIN, F. “The Impact of Global Structural Information
in Graph Neural Networks Applications”, Data, v. 7, n. 1, 2022. ISSN:
2306-5729. doi: 10.3390/data7010010. Disponível em: <https://www.

mdpi.com/2306-5729/7/1/10>.

[122] GIOVANNI, F. D., RUSCH, T. K., BRONSTEIN, M. M., et al. “How does
over-squashing affect the power of GNNs?” 2024. Disponível em: <https:

//arxiv.org/abs/2306.03589>.

65

https://cir.nii.ac.jp/crid/1570854174823707776
https://cir.nii.ac.jp/crid/1570854174823707776
https://arxiv.org/abs/1604.00289
https://arxiv.org/abs/2209.11142
https://arxiv.org/abs/2209.11142
https://arxiv.org/abs/1806.01203
https://arxiv.org/abs/2010.13146
https://arxiv.org/abs/2010.13146
https://arxiv.org/abs/2302.04496
https://proceedings.mlr.press/v198/velickovic22a.html
https://arxiv.org/abs/2006.05205
https://arxiv.org/abs/2006.05205
https://www.mdpi.com/2306-5729/7/1/10
https://www.mdpi.com/2306-5729/7/1/10
https://arxiv.org/abs/2306.03589
https://arxiv.org/abs/2306.03589

[123] TARJAN, R. “Depth-first search and linear graph algorithms”. In: 12th Annual
Symposium on Switching and Automata Theory (swat 1971), pp. 114–121,
1971. doi: 10.1109/SWAT.1971.10.

[124] BELLMAN, R. Dynamic Programming. USA, Princeton University Press,
2010. ISBN: 0691146683.

[125] GEISLER, S., KOSMALA, A., HERBST, D., et al. “Spatio-Spectral Graph
Neural Networks”. 2024. Disponível em: <https://arxiv.org/abs/

2405.19121>.

[126] BO, D., SHI, C., WANG, L., et al. “Specformer: Spectral Graph Neural
Networks Meet Transformers”. 2023. Disponível em: <https://arxiv.

org/abs/2303.01028>.

[127] PASZKE, A., GROSS, S., CHINTALA, S., et al. “Automatic differentiation
in PyTorch”, 2017.

[128] LOSHCHILOV, I., HUTTER, F. “Decoupled Weight Decay Regularization”.
2019. Disponível em: <https://arxiv.org/abs/1711.05101>.

[129] PASCANU, R., MIKOLOV, T., BENGIO, Y. “On the difficulty of training
Recurrent Neural Networks”. 2013. Disponível em: <https://arxiv.

org/abs/1211.5063>.

[130] BA, J. L., KIROS, J. R., HINTON, G. E. “Layer Normalization”. 2016.
Disponível em: <https://arxiv.org/abs/1607.06450>.

[131] ERDÖS, P., RÉNYI, A. “On the evolution of random graphs”. In: The Struc-
ture and Dynamics of Networks, pp. 38–82, Princeton, Princeton Univer-
sity Press, 2006. ISBN: 9781400841356. doi: doi:10.1515/9781400841356.
38. Disponível em: <https://doi.org/10.1515/9781400841356.38>.

[132] OPITZ, J. “A Closer Look at Classification Evaluation Metrics and a Criti-
cal Reflection of Common Evaluation Practice”, Transactions of the As-
sociation for Computational Linguistics, v. 12, pp. 820–836, 06 2024.
ISSN: 2307-387X. doi: 10.1162/tacl_a_00675. Disponível em: <https:

//doi.org/10.1162/tacl_a_00675>.

[133] MANN, H. B., WHITNEY, D. R. “On a Test of Whether one of Two Ran-
dom Variables is Stochastically Larger than the Other”, The Annals of
Mathematical Statistics, v. 18, n. 1, pp. 50 – 60, 1947. doi: 10.1214/
aoms/1177730491. Disponível em: <https://doi.org/10.1214/aoms/

1177730491>.

66

https://arxiv.org/abs/2405.19121
https://arxiv.org/abs/2405.19121
https://arxiv.org/abs/2303.01028
https://arxiv.org/abs/2303.01028
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1211.5063
https://arxiv.org/abs/1211.5063
https://arxiv.org/abs/1607.06450
https://doi.org/10.1515/9781400841356.38
https://doi.org/10.1162/tacl_a_00675
https://doi.org/10.1162/tacl_a_00675
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1214/aoms/1177730491

[134] VELICKOVIC, P., CUCURULL, G., CASANOVA, A., et al. “Graph Attention
Networks”. In: 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net, 2018. Disponível em: <https://

openreview.net/forum?id=rJXMpikCZ>.

[135] MERRIS, R. “Laplacian matrices of graphs: a survey”, Linear Algebra and its
Applications, v. 197-198, pp. 143–176, 1994. ISSN: 0024-3795. doi: https:
//doi.org/10.1016/0024-3795(94)90486-3. Disponível em: <https://

www.sciencedirect.com/science/article/pii/0024379594904863>.

[136] MARKEEVA, L., MCLEISH, S., IBARZ, B., et al. “The CLRS-Text Algo-
rithmic Reasoning Language Benchmark”. 2024. Disponível em: <https:

//arxiv.org/abs/2406.04229>.

[137] BOUNSI, W., IBARZ, B., DUDZIK, A., et al. “Transformers meet Neural
Algorithmic Reasoners”. 2024. Disponível em: <https://arxiv.org/

abs/2406.09308>.

[138] PLATONOV, O., KUZNEDELEV, D., BABENKO, A., et al. “Characteriz-
ing Graph Datasets for Node Classification: Homophily-Heterophily Di-
chotomy and Beyond”. 2024. Disponível em: <https://arxiv.org/abs/

2209.06177>.

67

https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://www.sciencedirect.com/science/article/pii/0024379594904863
https://www.sciencedirect.com/science/article/pii/0024379594904863
https://arxiv.org/abs/2406.04229
https://arxiv.org/abs/2406.04229
https://arxiv.org/abs/2406.09308
https://arxiv.org/abs/2406.09308
https://arxiv.org/abs/2209.06177
https://arxiv.org/abs/2209.06177

Appendix A

Graph Signal Processing

Graph Signal Processing (GSP) extends traditional signal processing techniques
from Euclidean domains to non-Euclidean domains that can be represented as graphs
[48]. The Fourier Transform is a technique for decomposing a signal, over a given
domain, into its frequency components, and it is arguably the most fundamental tool
in traditional Signal Processing. Extending signal processing to graphs naturally
begins with developing an analogue of the Fourier Transform for these irregular
domains. This extension is known as the Graph Fourier Transform (GFT).

Let G = (V , E) be a graph, then a signal over G is function x : V → R assigning
scalar values to nodes, the signal is usually represented by an N -dimensional vector,
where N = |V| and each index corresponds to a node.

Figure A.1: Example of a signal over a graph, specifically x = [1, 1,−1,−1].

One of the fundamental tools for analyzing signals in graph domains is the graph
Laplacian L, defined in Section 2.2.1. As previously discussed, it has the useful
property of quantifying the smoothness of a signal x, as shown in Equation 2.5:

xTLx =
1

2

∑
vi∈V

∑
vj∈N (vi)

(xi − xj)
2

68

This expression measures how similar the signal values are between adjacent
nodes. When neighboring nodes have similar values, xTLx is small, indicating a
smooth signal over the graph. In contrast, if neighboring node values differ signifi-
cantly, xTLx will be larger, reflecting a less smooth signal.

Proof A.1 (Proof of Equation 2.5) The proof starts from the observation, that
applying the Graph Laplacian L to an arbitrary signal x is

Lx = (D − A)x

= Dx− Ax

Specifically, the i-th entry of Lx is

(Lx)i = d(vi) · xi −
n∑

j=1

Ai,j · xj

=
∑

vj∈N (vi)

xi − xj

From (Lx)i =
∑

vj∈N (vi)
xi − xj, we calculate the value of xTLx:

xTLx =
∑
vi∈V

xi · (Lx)i

=
∑
vi∈V

xi ·
∑

vj∈N (vi)

xi − xj

=
∑
vi∈V

∑
vj∈N (vi)

xi · (xi − xj)

=
∑
vi∈V

∑
vj∈N (vi)

(
1

2
x2
i − xi · xj +

1

2
x2
j)

=
1

2

∑
vi∈V

∑
vj∈N (vi)

(xi − xj)
2

The concept of signal smoothness on graphs provides the foundation for defining
a graph-based analogue of the Fourier Transform, known as the Graph Fourier Trans-
form (GFT). In this framework, the eigenvectors of the graph Laplacian serve as the
Fourier basis, while the corresponding eigenvalues represent the frequency compo-
nents of the graph signal. This formulation is inspired by the analogy between the
graph Laplacian L and the Laplace-Beltrami operator [68], whose eigenfunctions
form the Fourier basis in classical signal processing.

Let u1, ..., uN be the set of orthonormal eigenvectors of the graph Laplacian
L = UTΛU . By treating the ith column of U as ui, the Graph Fourier Transform x̂

69

of a signal x is defined as

x̂ =
N∑
i=1

uT
1 x = UTx

Moreover, let λ1, ..., λn be the set of eigenvalues associated to the eigenvectors
u1, ..., uN , respectively, then

uT
i Lui = λiu

T
i ui = λi

the eigenvalue λi measures the smoothness of the associated eigenvector ui of norm
1. Therefore, the eigenvectors associated to small eigenvalues vary slowly across
the graph, in contrast, eigenvectors associated to higher eigenvalues exhibit high
difference between two connected nodes.

70

Appendix B

Structural Equation Model

Definition B.1 (Structural Equation Model) [81] A Structural Equation
Model (SEM) governing the random vector X = (X1, ..., Xn) is a set of equations of
the folowing form:

Si : Xi ← fXi
(pa(Xi), ϵi) (B.1)

where pa(Xi) ⊆ {X1, ..., Xn}\{Xi} are the set of parents of Xi, i.e. the causes of
Xi, and ϵi are independent noise random variables.

Any Structural Equation Model, if well formulated, induces a directed acyclic
graph, i.e. the causal graph. The graph is constructed by having a single node for
each random variable {Xi}ni=1 and an edge from Xj → Xi iff Xj ∈ pa(Xi).

It’s worth noting that possession of the entire SEM governing a set of random
variables {X1, ..., Xn}, gives one complete understanding of the underlying data
generating process. Moreover, by running the structural equations according to the
topological order of the generated DAG, it’s possible to generate samples from the
joint distribution P (X).

The usage the sign ← for denoting value attribution, instead of the usual equal
sign (=), is at the core of what kind of information SEM’s are trying to convey. As
equality is symmetric (A = B ⇐⇒ B = A) it is not a suitable relation to model
causality, since one should be able to convey the information that A is a cause of B,
but B is not a cause of A.

Now the relation← is asymmetric, and most importantly time-dependent, in the
sense that every Xi ∈ pa(Xi) should be generated prior to the generation of Y . This
is the main distinction between structural equations and algebraic equations, where
the latter is defined by its sets of solutions and the former defined by the solutions
of each individual equation [81].

71

Appendix C

Proof of Theorem 3.1

For readability purposes, Theorem 3.1 will be restated here.

Theorem C.1 (Algorithmic Alignment improves Sample Complexity [1])
For a fixed error parameter ϵ > 0 and failure probability δ ∈ [0, 1]. Let
{xi, g(xi)}Mi=1 ∼ D be a dataset sampled from distribution D. Suppose N1, ...,Nn are
the network’s N MLP modules and N and g (M, ϵ, δ)-algorithmically align through
functions f1, f2, ..., fn. Under the listed conditions, g is (M,O(ϵ), O(δ))-learnable
by N .

1. Algorithm Stability: Let A be the learning algorithm for Ni’s. Assume
f = A({xi, g(xi)}Mi=1) and f̂ = A({x̂i, g(xi)}Mi=1). For any x,

∥∥∥f(x)− f̂(x)
∥∥∥ ≤

L0maxi ∥xi − x̂i∥, for some L0.

2. Sequential Learning: The network modules are trained sequentially, that is,
the first module N1 has input samples {x̂1

i , f1(x
1
i)}Mi=1. For subsequent modules,

j > 1, the input x̂j
i of module Nj is the output of the previous modules, and

the labels are the ground-truth correct labels (f1 ◦ f2 ◦ ... ◦ fj)(x1
i).

3. Lipschitzness: The learned functions f̂j satisfy
∥∥∥f̂j(x)− f̂j(x̂)

∥∥∥ ≤
L1 ∥x− x̂∥, for some L1.

The proof for Theorem 3.1 follows an inductive strategy, and the proof follows
by showing that, under the assumptions, the error between module Nj and fj is
still restricted to O(ϵ) with probability 1 − O(δ), after the appliedtransformations
N1,N2, ...,Nj−1.

Assuming a sequential learning paradigm, where each module Nj is learned pre-
vious to the subsequent one Nj+1 and the input to the subsequent module is the
output of the previous one. Treating the network as the composition of all modules
N = N1 ◦ N2 ◦ ... ◦ Nn and the algorithmic procedure g = f1 ◦ f2 ◦ ... ◦ fn. The
goal is to bound the learned representation ∥N (x)− g(x)∥ with high probability, by
assuming learnability on the intermediary functions f1, f2, ..., fn.

72

Inductive Proof

Base Case: Assuming g equals a single function f1, and N1 is the module following learn-
ing procedure A, to learn g. From the assumption that N1 and g (M, ϵ, δ)-
algorithmically align, we know that f1 is (M, ϵ, δ)-learnable with A. Thus, the
proof of the base case is straightforward, and

Px∼D(∥N1(x)− g(x)∥ < ϵ) < 1− δ

holds, showing that single function g’s are (M,O(ϵ), O(δ))-learnable.

Inductive step : Our goal in the inductive step is to show that, if for a fixed k, the error
∥(N1 ◦ ... ◦ Nk)(x)− (f1 ◦ ... ◦ fk)(x)∥ is bounded by O(ϵ) with error probabil-
ity O(δ), then the same holds for the subsequent k + 1 module.

Let be z = (f1◦f2◦...◦fk)(x), the output generated by the k previous modules,
and ẑ = (N1 ◦ N2 ◦ ... ◦ Nk)(x) the output generated by the network up until
module k. The goal is to show that the bound ∥Nk+1(x)− fk+1(x)∥ holds from
the theorem’s assumptions and the inductive hypothesis. From the triangle
inequality of the norm, we have that

∥Nk+1(ẑ)− fk+1(z)∥ = ∥Nk+1(ẑ)−Nk+1(z) +Nk+1(z)− fk+1(z)∥

≤ ∥Nk+1(ẑ)−Nk+1(z)∥+ ∥Nk+1(z)− fk+1(z)∥

The first summand in the RHS of the inequation can then be bounded by the
Lipschitzness assumption of N , thus

∥Nk+1(ẑ)−Nk+1(z)∥ ≤ L1 ∥ẑ − z∥

From the inductive step, the term ∥ẑ − z∥ ≤ O(ϵ) with error probability O(δ),
therefore, with error probability O(δ) it holds that

∥Nk+1(ẑ)−Nk+1(z)∥ ≤ L1O(ϵ)

∥Nk+1(ẑ)−Nk+1(z)∥ ≤ O(ϵ)

For the second summand, we rely on the theorem’s assumption that fk is
(M, ϵ, δ)-learnable, by Ñk+1 = A({(zi, fk+1(zi))}Mi=0 on the correct inputs.
Moreover, the module Nk+1 = A({(ẑi, f(k + 1)(zi))}Mi=0 is generated from the
perturbed samples and from the Algorithm Stability assumption of Theo-

73

rem 3.1, it is possible to bound
∥∥∥Nk+1(z)− Ñk+1(z)

∥∥∥. Then,

∥Nk+1(z)− fk+1(z)∥ =
∥∥∥Nk+1(z)− Ñk+1(z) + Ñk+1(z)− fk+1(z)

∥∥∥
≤
∥∥∥Nk+1(z)− Ñk+1(z)

∥∥∥+ ∥∥∥Ñk+1(z)− fk+1(z)
∥∥∥

The first term
∥∥∥Nk+1(z)− Ñk+1(z)

∥∥∥ is bounded by L0maxi ∥zi − ẑi∥ from the

Algorithm Stability assumption, and the second term
∥∥∥Ñk+1(z)− fk+1(z)

∥∥∥
is bounded by ϵ with probability 1 − δ from PAC-learnability of fk+1. Thus,
with probability 1− δ, we have

∥Nk+1(z)− fk+1(z)∥ ≤ L0max
i
∥zi − ẑi∥+ ϵ

From the induction hypothesis:

Px∼D(∥zi − ẑi∥ ≤ O(ϵ)) ≤ 1−O(δ)

where zi = (f1◦f2◦ ...◦fk)(xi) and ẑi = (N1◦N2◦ ...◦Nk)(xi). The probability
of the bad event maxi ∥zi − ẑi∥ ≤ O(ϵ) can be bounded, with the assistance of
the union bound:

Px∼D

(
max

i
∥zi − ẑi∥ ≤ O(ϵ)

)
= Px∼D

(
∪Mi=0 (∥zi − ẑi∥ ≤ O(ϵ))

)
≤

M∑
i=0

Px∼D (∥zi − ẑi∥ ≤ O(ϵ))

Guaranteeing that maxi ∥zi − ẑi∥ ≤ O(ϵ) holds with probability at most 1 −
O(δ).

Combining the bounds for the two summands in the original expression, the
following holds with probability at most 1−O(δ):

∥Nk+1(ẑ)− fk+1(z)∥ ≤ O(ϵ) +O(ϵ) + ϵ = O(ϵ)

Completing the proof.

74

Appendix D

Breadth-first search pseudo-code

Algorithm 1: Breadth-first search
Data: Graph G = (V , E) (represented as adjacency matrix A) and a source

vertex s ∈ V .
Result: π, a list such that π[v] is the predecessor of v in G
foreach v ∈ V do

reach[v]← 0;
π[v]← v

end
reach[s]← 1;
do

prev_reach← reach;
foreach v1 ∈ V do

foreach v2 ∈ V : v2 ̸= v1 do
if A[v1, v2] = 1 & prev_reach[v1] = 1 then

if π[v2] = j & v2 ̸= s then
π[v2]← v1;

end
reach[v2]← 1;

end
end

end
while prev_reach[v] ̸= reach[v],∀v ∈ V ;

75

Appendix E

Unbiased Homophily [3]

The work of [3] extends the theoretical framework of graph homophily by introduc-
ing a novel measure, Unbiased Homophily, which fulfills six desirable properties
proposed by [138]. This measure is designed for graphs with categorical node labels
and provides a fair quantification of homophily, free from biases introduced by the
number of labels or class imbalance .

An edge is defined as homophilic if it connects two nodes with the same label,
and heterophilic otherwise. The measure proposed in [3] satisfies the following six
properties:

Property 1: Monotonicity. If an homophilic edge is added or an heterophilic edge is
removed, the homophily measure of the overral graph must increase.

Property 2: Minimal Agreement. The homophily measure should require that graphs
with only heterophilic edges attain a predefined lower bound value Rmin for all
other possible values of the measure.

Property 3: Maximal Agreement. The homophily measure should require that graphs
with only homophilic edges attain a predefined upper bound value Rmax for
all other possible values of the measure.

Property 4: Empty class tolerance. The property requires that if the number of labels
is increased by dummy labels, not present in the graph, the homophily mea-
sure should not change. Namely, labels not present in the graph should not
contribute to the measure.

Property 5: Constant baseline. If the node’s labels are completely independent of the
graph’s structure, then the attained homophily measure should be equal to a
baseline constant value Rbase.

Property 6: Class symmetry. Any reordering or renaming of the labels should not change
the attained value for homophily.

76

To construct a measure that satisfies all these properties, the authors introduce
the concept of a normalized class adjacency matrix CG, for a given graph G. The
Unbiased Homophily formulation is built on the definition of the normalized class
adjacency matrix.

Definition E.1 (Normalized class adjacency matrix) [3] For a given undi-
rected graph G = (V , E), where each node v ∈ V is assigned a categorical label
yv ∈ M , with M the label set and m = |M | its cardinality. The entries {cij}mi,j=1 of
the m×m normalized class adjacency matrix CG are

cii =
|{(u, v) ∈ E : yu = yv = i}|

|E|

cij =
|{(u, v) ∈ E : (yu, yv) = (i, j)}|

2|E|
, i ̸= j

Here, cii represents the proportion of homophilic edges within class i, and cij (for
i ̸= j) corresponds to the proportion of heterophilic edges between classes i and j.

From the Definition E.1, the authors of [3] were able to define the Unbiased
Homphily, a measure which attends to all six desirable homophily properties.

Definition E.2 (Unbiased Homophily) Given the normalized class adjacency
matrix CG, the Unbiased Homophily h(CG) is defined as

h(CG) =

∑m
j=1

∑j
i=1

√
ciicjj − cij∑m

j=1

∑j
i=1

√
ciicjj + cij

(E.1)

Following Definition E.2, the lower and upper bound Rmin, Rmax and baseline
Rbase values for h are −1, 1 and 0, respectively.

Our interpretation starts from the observation that if the graph’s structure and
node labeling are independent, the value of cij is expected to be equal to √ciicjj,
leading to a value of 0 in the baseline case. Therefore, the numerator √ciicjj − cij

should be interpreted as the difference between expected and observed heterophilic
edges between labels i and j. The summation over this difference is positive in the
case the number of expected heterophilic edges surpasses the number of observed
ones (i.e., when homophily is present), and is negative otherwise. The denominator
acts as a normalization factor, ensuring that the value of h remains within the
bounded interval [−1, 1].

The Unbiased Homophily measure satisfies all six desirable properties in al-
most all cases. An exception arises when the normalized class adjacency matrix
contains at most one non-zero diagonal entry. In such cases, the monotonicity and
minimal agreement properties may no longer hold. To address this edge case,

77

the authors of [3] propose a slight modification to the original definition (Definition
E.2) to address the extreme case.

For a more thorough presentation of Unbiased Homophily, see [3].

78

Appendix F

Unbiased Homophily for mask
outputs

Figure F.1: Distribution of Homophily for distinct algorithms.

79

Appendix G

Stochastic dominance

Definition G.1 (Stochastic Dominance [133]) Let A and B be two random
variables, with cumulative distribution functions FA and FB, respectively, with the
same support set X . We say that A stochastically dominates B if

FA(x) > FB(x), ∀x ∈ X

The Mann Whitney-U test [133], employed in Section 5.1.3, is a hypothesis test
on two random variables, A and B, with the following null (H0) and altenative (H1)
hypothesis. H0 : A and B come from the same distribution.

H1 : A stochastically dominates B

80

	List of Figures
	List of Tables
	Introduction
	System 1 and System 2
	Neural Algorithmic Reasoning
	Deep Learning over graphs
	Structure of the Dissertation

	Deep Learning over Graphs
	Spatial Graph Neural Networks
	Over-smoothing in Spatial GNNs

	Spectral Graph Neural Networks
	Graph Signal Processing
	Spectral GNN architectures

	Permutation-Equivariance in Graph Neural Networks
	Out-of-Distribution (OOD) generalization

	Neural Algorithmic Reasoning
	Algorithmic Alignment art:whatcan
	The CLRS Algorithmic Reasoning Benchmark art:clrs30
	Structure of the Dataset
	How the CLRS30 benchmark addresses OOD generalization
	Example: Breadth-first search
	Encode-Process-Decode

	SpectralMPNN
	On the defense of Spectral architectures for algorithmic execution
	The Message Passing inductive bias

	Spectral MPNN
	Update function
	PolySpectralMPNN

	Experiments and Results
	Experimental details
	Hyperparameters for training.
	Dataset generation
	Methodology for model comparison

	Results
	Analysis of the Fourier Features
	Ablation Study - Message Passing Layer

	Conclusion
	References
	Graph Signal Processing
	Structural Equation Model
	Proof of Theorem 3.1
	Breadth-first search pseudo-code
	Unbiased Homophily art:adjhomophily
	Unbiased Homophily for mask outputs
	Stochastic dominance

